首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The physiological response of erythromycin fermentation scale-up from 50 L to 132 m3 scale was investigated. A relatively high oxygen uptake rate (OUR) in early phase of fermentation was beneficial for erythromycin biosynthesis. Correspondingly, the maximal consistency coefficient (K) reflecting non-Newtonian fluid characteristics in 50 L and 132 m3 fermenter also appeared in same phase. Fluid dynamics in different scale bioreactor was further investigated by real-time computational fluid dynamics modeling. The results of simulation showed that the impeller combination in 50 L fermenter could provide more modest flow field environment compared with that in 132 m3 fermenter. The decrease of oxygen transfer rate (OTR) in 132 m3 fermenter was the main cause for impairing cell physiological metabolism and erythromycin biosynthesis. These results were helpful for understanding the relationship between hydrodynamic environment and physiological response of cells in bioreactor during the scale-up of fermentation process.  相似文献   

2.
The effect of NO3 ?:NH4 + ratio (14:1, 9:6, 7.5:7.5, 1:14, total 15 mmol/L N) in the nutrient solution on biomass, root morphology, and C and N metabolism parameter in hydroponically grown oilseed rape (Brassica napus L.) was evaluated. The dry weights of leaves and roots were significantly largest at the equal NO3 ?:NH4 + ratio (7.5:7.5) compared with those of high NO3 ?:NH4 + ratio (14:1) or low NO3 ?:NH4 + ratio (1:14). Additionally, low NO3 ?:NH4 + ratio (1:14) reduced total root length and root surface area compared with the equal NO3 ?:NH4 + ratio (7.5:7.5), while high NO3 ?:NH4 + ratio (14:1) did not show any significant effect on root morphology except average diameter. The maximum of chlorophyll a, chlorophyll b and carotenoid were obtained under 7.5:7.5 treatment, whereas the maximum of the leaf net photosynthetic (P n), stomatal conductance (G s) and transpiration rate (T r) were increased with increase in NH4 + concentration in the nutrient solution. The activity of nitrate reductase (NR) showed a significant difference at different NO3 ?:NH4 + ratios and ranged 9:6 > 7.5:7.5 > 14:1 > 1:14, whereas the range of soluble sugar and soluble protein was 7.5:7.5 > 1:14 > 9:6 > 14:1. Our study reveals that oilseed rape growth is greater under 7.5:7.5 treatment than that under three other treatments. Oilseed rape growth at high or low NO3 ?:NH4 + ratios was inhibited by decreased pigments, NR activity, soluble sugar, and soluble protein, whereas subdued root growth should be apprehended considerate under high NH4 + condition.  相似文献   

3.
A novel S2O3 2? luminescent sensor (Cu2+-p-CPIP) was developed and the presence of S2O3 2? caused an obvious fluorescence enhancement at 420 nm upon excitation at 330 nm, which could be distinguished with the naked eye under a UV lamp. Remarkably, the compound exhibited excellent selective and sensitive response to S2O3 2? over other common anions with a micromolar limit of detection (0.442 μM) in DMSO/H2O (v/v, 1:1) buffer. The absorbance intensity and the color of Cu2+-p -CPIP solution changed gradually with the increase of S2O3 2? concentration. The proposed method was applied to the determination of S2O3 2? in milk samples and the recoveries were 97.5–105%. The preparation of Cu2+-p -CPIP exhibited the quick, simple and facile advantages. The results showed that Cu2+-p -CPIP can be a good candidate for simple, rapid and sensitive colorimetric detection of S2O3 2? in aqueous solution.  相似文献   

4.
Characteristics for the specific binding of 125I-ω-CTX GVIA and 125I-ω-CTX MVIIC to crude membranes from BHKN101 cells expressing the α1B subunits of Cav2.2 channels and from mice brain lacking the α1B subunits of Cav2.2 channels, particularly, the effects of CaM and various Ca2+ channel blockers on these specific bindings were investigated. Specific binding of 125I-ω-CTX GVIA to the crude membranes from BHKN101 cells was observed, but not from control BHK6 cells. ω-CTX GVIA, ω-CTX MVIIC and ω-CTX SVIB inhibited the specific binding of 125I-ω-CTX GVIA to crude membranes from BHKN101 cells, and the IC50 values for ω-CTXGVIA, ω-CTX MVIIC and ω-CTX SVIB were 0.07, 8.5 and 1.7 nM, respectively. However, ω-agatoxin IVA and calciseptine at concentrations of 10−9–10−6 M did not inhibit specific binding. Specific binding was also about 80% inhibited by 20 μg protein/ml CaM. The amount of 125I-ω-CTX GVIA (30 pM) specifically bound to membranes from brain of knockout mice lacking α1B subunits of Cav2.2 channels was about 30% of that to the crude membranes from brain of wild-type. On the other hand, specific binding of 125I-ω-CTX MVIIC (200 pM) was observed on the crude membranes of both BHKN101 and control BHK6 cells. The specific binding of 125I-ω-CTX MVIIC (200 pM) was not inhibited by ω-CTX GVIA and ω-CTX SVIB, and also ω-Aga IVA and calciseptine at concentrations of 10−9–10−7 M, although specific binding was almost completely dose dependently inhibited by non-radiolabeled ω-CTX MVIIC (IC50 value was about 0.1 nM). 20 μg protein/ml CaM did not inhibit specific binding. Therefore, these results suggest that BHKN101 cells have a typical Cav2.2 channels which are also inhibited by CaM and have not specific binding sites for ω-CTX MVIIC, although ω-CTX MVIIC is a blocker for both Cav2.1 (α1A; P/Q-type) and Cav2.2 channels.  相似文献   

5.
d(?)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L?1 of glucose, producing 184–191 g L?1 of d-lactic acid, with a volumetric productivity of 4.38 g L?1 h?1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L?1 of glucose, producing 146–150 g L?1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L?1 h?1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.  相似文献   

6.
In order to evaluate the need for using scale acidification to remove carbonates prior to stable isotope analysis, we compared acidified and non-acidified scales of six freshwater fish species (perch, roach, rudd, pike, tench and bream) with contrasting mineral content in their scales. Fish samples were taken from six lakes with variable trophic conditions, ranging from oligotrophic to hypertrophic, and differing in CO2 concentrations. The scale mineral content of the six species studied ranged between 31.8 and 61.3% dry weight (DW) in tench and perch, respectively. The elemental composition was characterised by high amounts of phosphorus, varying from 4.5 to 9.1% DW. The mineral fraction was dominated by apatite (range 24.4–49.2% DW), carbonates constituted a very small proportion of the total carbon content (average ± SD: 5.5 ± 1.7%). The average effect of acidification was very small for all species (average ± SD: 0.181 ± 0.122 and −0.208 ± 0.243 for carbon and nitrogen, respectively), albeit significant for five out of the six species (excepting tench that had the lowest mineral content). Linear regression slopes between acidified and untreated scales did not differ significantly from one for almost all the species and isotopes. The effects of acidification on the two isotopes were correlated with the relative carbonate content as well as with the CO2 concentration for carbon and total phosphorus for nitrogen. We conclude that the need for scale acidification depends on the different species and on the system studied, although in most cases the acidification effect will be biologically irrelevant. However, dual analysis of acidified and untreated scales may provide useful information on differences in stable isotope composition of dissolved inorganic carbon and on phytoplankton carbon fractionation generated by varying levels of CO2 availability.  相似文献   

7.
Skleryk RS  So AK  Espie GS 《Planta》2002,214(4):572-583
We have examined the effect of inorganic and organic carbon nutrition on the physiological expression of HCO3- transport and the CO2-concentrating mechanism (CCM) in the nutritionally versatile cyanobacterium Chlorogloeopsis sp. ATCC 27193. Cells grown under photoautotrophic conditions in the presence of limiting or replete levels of inorganic carbon (Ci), or grown under mixotrophic (light) or chemoheterotrophic (dark) conditions in the presence of sucrose retained both active CO2 and Na(+)-independent HCO3- transport activity. However, two distinct effects on the kinetic properties of HCO3- transport were observed, which segregated on the basis of phototrophic and chemoheterotrophic growth in the dark. In the former, the apparent substrate affinity of the HCO3- transport system (K0.5) varied (12-fold) in response to the growth Ci or mixotrophy while the maximum rate of HCO3- transport was approximately constant. In the latter case, the K0.5 value was unchanged from the starting value (35 microM) of Ci-limited photoautotrophic cells used to initiate the dark-grown cultures, but transport capacity declined 3-fold. Modulation of the K0.5 (HCO3- transport) value required light. Cellular carboxysome content was unaffected by growth under any of the regimes employed and these structures were the predominant location of ribulose-1,5-bisphosphate carboxylase/oxygenase, as indicated by immunogold electron microscopy. Mixotrophic and chemoheterotrophic growth resulted in a diminished ability to concentrate Ci internally and a reduction in Ci accumulation ratios at low external Ci concentrations. The relationship between photosynthetic carbon fixation and the internal Ci pool varied by 2-fold, with high-Ci-grown cells being the most efficient and mixotrophically grown cells the least, indicating that there was limited capacity to modulate this relationship in response to changes in carbon nutrition. Within broad limits this relationship appeared to be a fixed trait of the strain and an important factor in determining growth rate.  相似文献   

8.
Immobilised-cell fermentors offer great benefits compared to traditional free-cell systems. However, a major problem is unbalanced flavour production when these fermentors are used for the production of alcoholic beverages. One of the keys to obtaining better control over flavour formation may be the concentration of dissolved CO2, which has inhibitory effects on yeast growth and metabolism. This article demonstrates that the presence of immobilisation matrices facilitates the removal of CO2 from the liquid medium, which results in a low level of dissolved CO2 during fermentation. Moreover, the formation of volatile higher alcohols and esters was greatly enhanced in the immobilised-cell system when compared to the free cell system. By sparging a CO2 flow (45 ml/min) into the immobilised-cell system, cell growth was reduced by 10–30% during the active fermentation stage, while the fermentation rate was unaffected. The uptake of branched-chain amino acids was reduced by 8–22%, and the formation of higher alcohols and esters was reduced on average by 15% and 18%, respectively. The results of this study suggest that mismatched flavour profiles with immobilised-cell systems can be adjusted by controlling the level of dissolved CO2 during fermentation with immobilised yeast.  相似文献   

9.

Background and aims

The aim of weed control and fertilization in forest plantations was to increase tree growth by reducing competition for available nutrients and water. However, treatments that influence weed biomass can also have significant impacts on soil carbon (C) and nitrogen (N) cycling which can in turn lead to changes in the dynamics of stable C (δ13C) and N (δ15N) isotope compositions in soils and tree foliage.

Methods

We examined the key C and N cycling processes influenced by routine and luxury weed control and fertilization treatments as reflected by soil and foliar δ13C and δ15N and long-term tree growth in an 8-year old F1 hybrid pine (Pinus elliottii x P. caribaea) plantation in southeast Queensland, Australia. Weed control treatments varied by treatment frequency and intensity while fertilization treatments varied by the application of N, phosphorus (P), potassium (K) and micronutrients. Different soil and canopy sampling positions were assessed to determine if sampling position enhanced the relationships among soil N transformations and tree N use, water use efficiency and carbon gain under the early establishment silviculture.

Results

Routine weed control was associated with increased weed biomass returned to the soil, compared with luxury weed control. Soil δ13C increased at the 0–5 cm soil sampling depth in both the inter-planting (IPR) and planting row (PR) as a result of the routine weed control treatments. In addition, soil δ13C was significantly higher as a result of fertilisation treatment in the 0–5 cm soil sampling depth in the PR. Soil δ13C was negatively correlated to soil δ15N at the 0–5 cm soil sampling depth in the IPR. Soil δ15N increased in the 0–5 and 5–10 cm soil sampling depths in the IPR, as a result of more frequent (luxury) weed control. Foliar δ15N and tree water use efficiency (WUE) (as indicated by foliar δ13C) were positively correlated with tree growth at age 8 years. While relationships between δ13C and δ15N in the soil and foliage varied depending on soil sampling depth and position, and with canopy sampling position where there were consistent relationships between soil δ13C (or δ15N) and foliar δ15N.

Conclusions

This study demonstrates how early establishment silviculture has important implications for soil C and N cycling and how soil δ13C and δ15N were consistent with changes in soil C cycling and N transformations as a result of weed control treatments, while foliar δ15N was linked to more rapid N cycling as reflected in the soil δ15N, which increased tree growth and tree WUE (as reflected by foliar δ13C).
  相似文献   

10.
Baseline erythroid indices are increasingly involved as risk factors for common complex diseases in humans. However, little is known about the genetic architecture of baseline erythroid traits in pigs. In this study, hematocrit (Hct), hemoglobin (Hgb), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell (RBC), and red cell distribution width (RDW) were measured in 1420 (day 18), 1410 (day 46), and 1033 (day 240) F(2) pigs from a White Duroc x Erhualian intercross resource population. The entire resource population was genotyped for 183 microsatellite loci across the pig genome, and the quantitative trait loci (QTL) analysis was performed for all erythroid-related traits measured with QTL Express based on a least-squares method. A total of 101 QTL, including 46 genome-wide significant QTL and 55 chromosome-wide significant QTL, regulating erythroid traits were found on all pig chromosomes (SSC) except for SSC15 and SSC18. The genome-wide significant QTL were mainly localized on SSC1, 7, 8, 10, and X. These results confirmed most of QTL previously identified in the swine. More importantly, this study detected age-specific QTL for baseline erythroid traits in pigs for the first time. Notably, the QTL for MCV and MCH on day 18 on SSC8 with small intervals of 3 and 4 cM, respectively, provided a good starting point for identifying causal genes underlying MCV and MCH in the future.  相似文献   

11.

Abstract  

Auger-emitting radionuclides such as 99mTc have been the focus of recent studies aiming at finding more selective therapeutic approaches. To explore the potential usefulness of 99mTc as an Auger emitter, we have synthesized and biologically evaluated novel multifunctional structures comprising (1) a pyrazolyl-diamine framework bearing a set of donor atoms to stabilize the [M(CO)3]+ (M is Re, 99mTc) core; (2) a DNA intercalating moiety of the acridine orange type to ensure close proximity of the radionuclide to DNA and to follow the internalization and subcellular trafficking of the compounds by confocal fluorescence microscopy; and (3) a bombesin (BBN) analogue of the type X-BBN[7-14] (where X is SGS, GGG) to provide specificity towards cells expressing the gastrin releasing peptide receptor (GRPr). Of the evaluated 99mTc complexes, Tc 3 containing the GGG-BBN[7-14] peptide showed the highest cellular internalization in GRPr-positive PC3 human prostate tumor cells, presenting a remarkably high nuclear uptake in the same cell line. Live-cell confocal imaging microscopy studies with the congener Re complex, Re 3 , showed a considerable accumulation of fluorescence in the nucleus, with kinetics of uptake similar to that exhibited by Tc 3 . Together, these data show that the acridine orange intercalator and the metal fragment are colocalized in the nucleus, which indicates that they remain connected despite the lysosomal degradation of Tc 3 /Re 3 . These compounds are the first examples of 99mTc bioconjugates that combine specific cell targeting with nuclear internalization, a crucial issue to explore use of 99mTc in Auger therapy.  相似文献   

12.

Background

Long-acting muscarinic antagonists (LAMAs) are recommended for the treatment of chronic obstructive pulmonary disease (COPD). Glycopyrrolate/eFlow® is an investigational drug–device combination of the LAMA glycopyrrolate administered by an eFlow® Closed System (eFlow® CS) nebulizer. The GOLDEN 2 (NCT01706536) and GOLDEN 6 (NCT02038829) Phase II, multicenter studies were conducted to inform dose selection for the GOLDEN Phase III clinical trials. Bronchodilator responses and safety assessments supported dose selection.

Methods

Subjects with moderate-to-severe COPD were randomized into 28-day parallel-group (GOLDEN 2) or 7-day crossover (GOLDEN 6) studies and received placebo, glycopyrrolate (3, 6.25, 12.5, 25, 50 or 100 μg twice daily [BID]) or aclidinium bromide 400 μg BID. The primary endpoint of both studies was change from baseline in trough forced expiratory volume in 1 s (FEV1). Safety assessments included the incidence of treatment-emergent adverse events (TEAEs), treatment-emergent serious adverse events, and discontinuation due to TEAE. Lung function data collected in both studies were pooled.

Results

The combined GOLDEN 2 (n?=?282) and GOLDEN 6 (n?=?96) studies included 378 subjects. On Days 7 and 28 there were dose-ordered, statistically significant and clinically important lung function improvements in glycopyrrolate treatment groups. Specifically, on Day 7, glycopyrrolate produced >0.100 L placebo-adjusted changes from baseline in trough FEV1 (12.5 μg BID: 0.122 L; 25 μg BID: 0.123 L; 50 μg BID: 0.137 L) and FEV1 AUC0–12 (12.5 μg BID: 0.145 L; 25 μg BID: 0.178 L; 50 μg BID: 0.180 L). The improvements in lung function for the glycopyrrolate 25 and 50 μg BID doses were comparable to those with aclidinium bromide 400 μg BID (FEV1: 0.149 L; FEV1 AUC0?12: 0.172 L). Acceptable safety profiles were observed across all groups in both studies.

Conclusions

The efficacy and safety findings supported selection of glycopyrrolate 25 and 50 μg BID doses for the Phase III GOLDEN studies and provided preliminary evidence for the use of nebulized glycopyrrolate as a maintenance therapy for COPD.
  相似文献   

13.
This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification–denitrification (PND), “DO elbow” point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.  相似文献   

14.
Understanding the bond-cleavage ability of metal clusters is very important in various fields, such as catalysis and surface science. In this work, we performed density functional theory calculations on the first dehydrogenation process (also the key step) of methanol on Ptn q (n = 1–3, q = 0, +1, ?1) clusters in varied charge states using quantum chemical calculations. It is shown that methanol is adsorbed much more easily to the cationic Ptn + than to the neutral and anionic Ptn 0/?. By contrast, the intrinsic bond cleavage barriers of both C–H and O–H on the cationic Ptn + are significantly higher than on Ptn 0/? (the only exception is the C–H bond cleavage on Pt+). Promisingly, injecting an electron to the neutral Ptn 0 to give Ptn ? can greatly reduce the C–H/O–H bond scission barrier while maintaining appreciable adsorption energy. The charging effect can be nicely interpreted by the nature of the frontier orbitals of Ptn q.  相似文献   

15.
The adequate reconstitution of human soft tissue wounds requires the coordinated interaction of endothelial cells and fibroblasts during the proliferation phase of healing. Endothelial cells assure neoangiogenesis, fibroblasts fill the defect and provide extracellular matrix proteins, and myofibroblasts are believed to support the reconstitution of microvessels. In the present study, we combined in vitro-wound size measurement and multicolour immunocytochemical staining of co-cultured human dermal microvascular endothelial cells and normal human dermal fibroblasts, recently introduced as co-culture scratch-wound migration assay. Applying antibodies for α-smooth-muscle actin, von Willebrand factor, extra domain A fibronectin and endothelin-1, we were able to monitor proliferation, migration and the differentiation process from fibroblasts to myofibroblasts as a response to hypoxia. Furthermore, we verified, whether transforming growth factor β1 (TGFβ1) and endothelin-1 are able to mediate this response. We show, that proliferation and migration of endothelial cells and fibroblasts decreased under hypoxia. The additional administration of TGFβ1 did not significantly attenuate this decrease. Solely the myofibroblast population in co-culture adapted well to hypoxia, when cultures were supplemented with TGFβ1. Considerating the data concerning TGFβ1 and endothelin-1, we propose a model explaining the cellular interaction during early and late proliferation phase of human wound healing.  相似文献   

16.
A corrected western Atlantic Holocene sea-level curve was constructed from 145 calibrated 14C and TIMS U-Th dates from shallow Acropora palmata framework and intertidal Rhizopora mangle peat from the Florida Keys, Belize, and the wider Caribbean. Data include both previously published and newly reported coral and peat dates. With the elevations of corals restricted to positions below sea level and those of peats to intertidal and higher levels, a curve bracketed by corals below and peat above effectively delineates the positions of a rising Holocene sea. From 3–11 ka, the corrected curve shifts progressively to older calibrated ages, reaching an ~1-kyr increase at –21 m MSL (mean sea level). Elevations and calibrated ages of samples from each locality in the wider Caribbean region constitute an important database for future refinement with glacio-hydro-isostatic elevation corrections from 3-D Earth models. In future studies of the history of western Atlantic coral reefs, scientists will be able to relate calibrated radiocarbon dates to this sea-level curve to determine paleo water depths and rates of sea-level rise.  相似文献   

17.

Background

Therapeutic administration of the drug valproate (VPA) results in metabolic changes at the hepatic level that have not been fully characterized. Interference of this branched-chain fatty acid with the oxidative metabolism of amino acids may have consequences for the downstream biosynthesis of essential cofactors.

Objectives

We aimed to evaluate the effect of VPA on amino acid and NAD+ metabolism using targeted MS-based metabolite profiling.

Methods

Plasma samples from patients under chronic treatment with VPA were analyzed. VPA was administered to Wistar rats mimicking prolonged and acute treatment, the latter with two different doses. Plasma and liver samples were collected for targeted metabolomics studies using UPLC-MS/MS and GC-FID.

Results

Analysis of amino acids in rat plasma and liver and in human plasma demonstrated that drug intake is associated with a particularly significant drop in the levels of tryptophan, and increased levels of glycine and lysine. The lowered plasma tryptophan levels prompted us to study the intracellular content of tryptophan and various nicotinamide adenine dinucleotides. A significant decrease of NAD+ and NADP+ was observed in the liver of rats after the single administration of VPA at two different doses, but not after repeated administration.

Conclusion

The observed accumulation of kynurenine intermediates in rat liver tissue suggests a drug-induced interference with the de novo pathway of NAD+ biosynthesis. These findings provide novel insights into the mechanisms of VPA associated hepatocellular dysfunction and/or toxicity, but with possible major relevance to the anticancer effects of the drug.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号