首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Anti-inflammatory gene therapy is promising in inflammatory diseases such as rheumatoid arthritis (RA). We have previously demonstrated that intra-muscular (i.m.) electrotransfer (ET) of plasmids encoding three different human tumor necrosis factor-alpha-soluble receptor I variants (hTNFR-Is) exert protective effects in an experimental RA model. However, such a systemic approach could be responsible for side effects. The present study aimed at performing an intra-articular (i.a.) gene therapy by electrotransfer using the hTNFR-Is plasmids. METHODS AND RESULTS: We evaluated targeting of mice joints by CCD optical imaging after i.a. ET of a luciferase-encoding plasmid and we showed that ET led to strongly increased transgene expression in a plasmid dose-dependent manner. Moreover, articular and seric hTNFR-Is was detectable for 2 weeks. As expected, systemic hTNFR-Is rates were lower after i.a. ET than after i.m. ET. A longer protein secretion could be achieved with several i.a. ETs. Also, we observed that hTNFR-Is expression within arthritic joints was slightly higher than in normal joints. CONCLUSIONS: In collagen-induced arthritis (CIA), a mouse model for RA, we demonstrated that hTNFR-Is/mIgG1-encoding plasmid i.a. ET decreased joint destruction in the ankles. In conclusion, our results suggest that local TNFR-Is gene therapy may play a role in decreasing joint destruction in CIA.  相似文献   

2.
BACKGROUND: It has previously been demonstrated that high levels of gene expression in skeletal muscles can be achieved after direct in vivo electrotransfer of naked plasmid DNA. The purpose of this study is to examine the potential of in vivo electroporation of plasmid DNA encoding human IL-1Ra for the prevention of murine collagen-induced arthritis (CIA). METHODS: DBA/1 mice were injected in gastrocnemius muscles with plasmid DNA followed by in vivo electroporation. To uncover the optimum conditions of gene transfer, various electric field strengths and different amounts of plasmid DNA were applied. Calf muscles around the injected areas were investigated with histological methods for damage to muscle tissue. The levels of human IL-1Ra expression in the injected area and also in the serum were determined with ELISA for human IL-1Ra. Based on these data, the effects of electrotransfer of plasmid DNA were tested using the murine CIA model. DBA/1 mice were immunized with bovine collagen type II at the base of the tail. On day 21, mice were given a booster injection with the same antigen. Mice were divided into two groups on day 26. One group of mice received plasmid containing the IL-1Ra cDNA sequence, while control mice were given plasmid lacking the IL-1Ra coding sequence. The incidence of arthritis was evaluated by macroscopic analysis, histological analysis, and the levels of inflammatory cytokines. RESULTS: IL-1Ra expression increased as a function of the electrical field strength and the amount of DNA. 200 V/cm (eight pulses; 20 ms per pulse; 1 Hz) and 15 microg of plasmid DNA per mouse were found to be optimum for gene transfer. After in vivo electroporation, gene expression in both muscle and serum increased gradually, reaching a peak value on day 10. Significant levels of human IL-1Ra expression were maintained for 20 days. Macroscopic analysis showed that the onset of CIA was significantly inhibited by direct electrotransfer of plasmid DNA encoding human IL-1Ra. Histological analysis of knee joints showed that the incidence of arthritis in knee joints was also prevented. The levels of mouse IL-1beta and IL-12 in paws were significantly lower in the group treated with IL-1Ra than those in the control group. CONCLUSIONS: These results demonstrate that direct electrotransfer of plasmid containing the human IL-1Ra cDNA sequence to skeletal muscle can reduce the incidence of CIA in mice.  相似文献   

3.
For the treatment of rheumatoid arthritis, efficient drug delivery methods to the inflamed joints need to be developed. Because T cells expressing an appropriate autoantigen-specific receptor can migrate to inflamed lesions, it has been reasoned that they can be employed to deliver therapeutic agents. To examine the ability and efficiency of such T cells as a vehicle, we employed an experimentally induced model of arthritis. Splenic T cells from DO11.10 TCR transgenic mice specific for OVA were transduced with murine IL-10. Adoptive transfer of the IL-10-transduced DO11.10 splenocytes ameliorated OVA-induced arthritis despite the presence of around 95% nontransduced cells. Using green fluorescent protein as a marker for selection, the number of transferred cells needed to ameliorate the disease was able to be reduced to 10(4). Preferential accumulation of the transferred T cells was observed in the inflamed joint, and the improvement in the disease was not accompanied by impairment of the systemic immune response to the Ag, suggesting that the transferred T cells exert their anti-inflammatory task locally, mainly in the joints where the Ag exists. In addition, IL-10-transduced DO11.10 T cells ameliorated methylated BSA-induced arthritis when the arthritic joint was coinjected with OVA in addition to methylated BSA. These results suggest that T cells specific for a joint-specific Ag would be useful as a therapeutic vehicle in rheumatoid arthritis for which the arthritic autoantigen is still unknown.  相似文献   

4.
Viral IL-10 (vIL-10) and soluble TNF receptor (sTNFR) are anti-inflammatory proteins that can suppress collagen-induced arthritis (CIA). These and related proteins have shown efficacy in the treatment of human rheumatoid arthritis; however, neither alone is able to completely suppress disease. Furthermore, they have short half-lives, necessitating frequent administration. To determine the ability of these proteins to act synergistically following gene transfer, arthritis was induced in DBA/1 male mice by immunization with type II collagen on days 0 and 21. Mice were injected i.v. either before disease onset (day 20) or after disease onset (day 28) with 1010 particles of adenovirus encoding vIL-10, a soluble TNF receptor-IgG1 fusion protein (sTNFR-Ig), a combination of both vectors, or a control vector lacking a transgene. Significant synergism was observed with the combination of vIL-10 and sTNFR-Ig, with a substantial reduction in both the incidence and severity of disease as well as inhibition of progression of established disease. sTNFR-Ig alone had no effect on CIA. vIL-10 alone inhibited disease when given before disease onset, but had minimal effect on established disease. Both proteins inhibited spleen cell proliferation and IFN-gamma secretion in response to stimulation with type II collagen, but only vIL-10 reduced the synovial mRNA levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6. These findings demonstrate that vIL-10 and sTNFR-Ig act synergistically in suppressing CIA and suggest that gene transfer offers a potential therapeutic modality for the treatment of arthritis.  相似文献   

5.
BACKGROUND: The tumor necrosis factor (TNF)-alpha plays a central role in rheumatoid arthritis (RA) and current biotherapies targeting TNF-alpha have a major impact on RA treatment. The long-term safety concerns associated with the repetitive TNF blockade prompt optimization of therapeutic anti-TNF approaches. Since we recently demonstrated that intra-articular gene transfer using a recombinant adeno-associated virus serotype 5 (rAAV5) efficiently transduces arthritic joints, we evaluate its effect on collagen-induced arthritis (CIA) when encoding TNF antagonists. METHODS: Recombinant AAV5 vectors encoding the human TNFRp55 extracellular domain fused to the Fc region of mice IgG1 (TR1) or a small molecular weight dimeric human TNFRp75 extracellular domain (TR2), under two different promoters, the CMV or a chimeric NF-kappaB-based promoter inducible by inflammation, were injected into mouse CIA joints. RESULTS: Best protection against arthritis was obtained with the rAAV5 encoding the TR1, as reflected by delayed disease onset, decreased incidence and severity of joint damage. This effect was associated with a transient expression of the anti-TNF agent when expressed under a NF-kappaB-responsive promoter, only detectable during disease flare, while the antagonist expression was rapidly increased and stable when expressed from a CMV promoter. Importantly, using the intra-articular administration of the rAAV5-NF-kappaB-TR1 vector, we observed a striking correlation between local TR1 expression and inflammation. CONCLUSIONS: These findings strongly support the feasibility of improving the safety of anti-TNF approaches for the treatment of arthritis by local rAAV5-mediated gene expression under an inflammation-responsive promoter, able to provide a limited, transient and therapeutically relevant expression of anti-TNF compounds.  相似文献   

6.
This study focuses on the possible therapeutic utility of liposomes in the local treatment of inflammatory disorders, specifically rheumatoid arthritis (RA). Our purpose was to design a depot delivery system of an anti-inflammatory glycoprotein, lactoferrin (Lf), using positive multivesicular liposomes and to investigate its in vivo efficiency. Lactoferrin (Lf) has previously been shown to have therapeutic potential in mice with collagen-induced arthritis (CIA) after intra-articular (i.a.) injection. In order to protect Lf from enzymatic degradation and to maintain an adequate concentration in the joint, liposomes have been used as carriers for controlled drug delivery. Based on our previous findings we compared the ability of free Lf and Lf encapsulated in liposomes to suppress established joint inflammation and to modulate the cytokine response of lymph node (LN) T lymphocytes in DBA/1 mice with CIA. The anti-inflammatory effect of Lf formulated in positive liposomes was more pronounced compared with the free protein. After a single i.a. injection of liposomal Lf the arthritic score significantly decreased continuously for 2 weeks while in the case of free Lf for only 3-4 days. The cytokine levels produced by LN T cells showed decreased pro-inflammatory cytokines (TNF-alpha and IFN-gamma) accompanied by increased anti-inflammatory cytokines (IL-5 and especcialy IL-10) in encapsulated compared with free Lf. When compared with free Lf, liposomal Lf decreased the expression of costimulatory molecules on DCs, reduced pro-inflammatory (TNF) and increased anti-inflammatory (IL-10) cytokine production. Using CIA model we have studied the liposome trafficking following i.a. administration and we have identified DCs as a target for liposomes in the draining LN. Our results suggest that the entrapment of Lf in liposomes may modify its pharmacodynamic profile and could have great potential as controlled delivery system in the treatment of RA and other local inflammatory conditions.  相似文献   

7.
This study focuses on the possible therapeutic utility of liposomes in the local treatment of inflammatory disorders, specifically rheumatoid arthritis (RA). Our purpose was to design a depot delivery system of an anti-inflammatory glycoprotein, lactoferrin (Lf), using positive multivesicular liposomes and to investigate its in vivo efficiency. Lactoferrin (Lf) has previously been shown to have therapeutic potential in mice with collagen-induced arthritis (CIA) after intra-articular (i.a.) injection. In order to protect Lf from enzymatic degradation and to maintain an adequate concentration in the joint, liposomes have been used as carriers for controlled drug delivery. Based on our previous findings we compared the ability of free Lf and Lf encapsulated in liposomes to suppress established joint inflammation and to modulate the cytokine response of lymph node (LN) T lymphocytes in DBA/1 mice with CIA. The anti-inflammatory effect of Lf formulated in positive liposomes was more pronounced compared with the free protein. After a single i.a. injection of liposomal Lf the arthritic score significantly decreased continuously for 2 weeks while in the case of free Lf for only 3–4 days. The cytokine levels produced by LN T cells showed decreased pro-inflammatory cytokines (TNF-α and IFN-γ) accompanied by increased anti-inflammatory cytokines (IL-5 and especcialy IL-10) in encapsulated compared with free Lf. When compared with free Lf, liposomal Lf decreased the expression of costimulatory molecules on DCs, reduced pro-inflammatory (TNF) and increased anti-inflammatory (IL-10) cytokine production. Using CIA model we have studied the liposome trafficking following i.a. administration and we have identified DCs as a target for liposomes in the draining LN. Our results suggest that the entrapment of Lf in liposomes may modify its pharmacodynamic profile and could have great potential as controlled delivery system in the treatment of RA and other local inflammatory conditions.  相似文献   

8.
IL-17A is a T cell-derived proinflammatory cytokine that contributes to the pathogenesis of rheumatoid arthritis. Recently, six related molecules have been identified to form the IL-17 family, as follows: IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F. Whereas IL-17A and IL-17F up-regulate IL-6 in synovial fibroblasts, IL-17B and IL-17C are reported to stimulate the release of TNF-alpha and IL-1beta from the monocytic cell line, THP-1 cell. However, their detailed function remains to be elucidated. We report in this study the effects of IL-17 family on the collagen-induced arthritis (CIA) progression by T cell gene transfer and bone marrow chimeric mice. The mRNA expressions of IL-17 family (IL-17A, IL-17B, IL-17C, and IL-17F) and their receptor (IL-17R and IL-17Rh1) genes in the arthritic paws of CIA mice were elevated compared with controls. Although IL-17A and IL-17F were expressed in CD4(+) T cells, IL-17B and IL-17C were expressed in the cartilage and in various cell populations in the CIA arthritic paws, respectively. In vitro, IL-17A, IL-17B, IL-17C, and IL-17F induced TNF-alpha production in mouse peritoneal exudate cells. In vivo, adoptive transfer of IL-17B- and IL-17C-transduced CD4(+) T cells evidently exacerbated arthritis. Bone marrow chimeric mice of IL-17B and IL-17C exhibited elevated serum TNF-alpha concentration and the high arthritis score upon CIA induction. Moreover, neutralization of IL-17B significantly suppressed the progression of arthritis and bone destruction in CIA mice. Therefore, not only IL-17A, but also IL-17B and IL-17C play an important role in the pathogenesis of inflammatory arthritis.  相似文献   

9.
BACKGROUND: Gene transfer to synovium in joints has been shown to be an effective approach for treating pathologies associated with rheumatoid arthritis (RA) and related joint disorders. However, the efficiency and duration of gene delivery has been limiting for successful gene therapy for arthritis. The transient gene expression that often accompanies non-viral gene delivery can be prolonged by integration of vector DNA into the host genome. We report a novel approach for non-viral gene therapy to joints that utilizes phage phiC31 integrase to bring about unidirectional genomic integration. METHODS: Rabbit and human synovial cells were co-transfected with a plasmid expressing phiC31 integrase and a plasmid containing the transgene and an attB site. Cells were cultured with or without G418 selection and the number of neo-resistant colonies or eGFP cells determined, respectively. Plasmid rescue, PCR query, and DNA sequence analysis were performed to reveal integration sites in the rabbit and human genomes. For in vivo studies, attB-reporter gene plasmids and a plasmid expressing phiC31 integrase were intra-articularly injected into rabbit knees. Joint sections were used for histological analysis of beta-gal expression, and synovial cells were isolated to measure luciferase expression. RESULTS: We demonstrated that co-transfection of a plasmid expressing phiC31 integrase with a plasmid containing the transgene and attB increased the frequency of transgene expression in rabbit synovial fibroblasts and primary human RA synoviocytes. Plasmid rescue and DNA sequence analysis of plasmid-chromosome junctions revealed integration at endogenous pseudo attP sequences in the rabbit genome, and PCR query detected integration at previously characterized integration sites in the human genome. Significantly higher levels of transgene expression were detected in vivo in rabbit knees after intra-articular injection of attB-reporter gene plasmids and a plasmid expressing phiC31 integrase. CONCLUSION: The ability of phiC31 integrase to facilitate genomic integration in synovial cells and increase transgene expression in the rabbit synovium suggests that, in combination with more efficient DNA delivery methods, this integrase system could be beneficial for treatment of rheumatoid arthritis and other joint disorders.  相似文献   

10.
Rheumatoid arthritis (RA) represents a type of autoimmune disease that mainly affect the joints due to persistent synovitis. Eosinophils were Th2 effector cells that have been shown to have anti-inflammatory role recently. In this study, we aimed to investigate the effects of eosinophils transfer on arthritis and underlying mechanisms. DBA/1 mice were induced with collagen-induced arthritis (CIA) and treated with purified eosinophils at different time points. We showed that eosinophils transfer attenuated arthritis in CIA mice. Meanwhile, TNF-α, IL-6, IL-12 and iNOS levels were decreased whereas TGF-β, IL-10, IL-13 and Arg1 levels were increased after eosinophil transfer. In vitro stimulation of bone marrow-derived macrophage (BMDM) with LPS and IFN-γ induced high expression of CD68, iNOS, TNF-α, IL-6, and IL-12, while treatment with eosinophils downregulated their expression levels. Furthermore, high levels of p-IκB and p-P38 expression in BMDM induced by LPS and IFN-γ could be suppressed by eosinophil treatment, and a P38 or IκB inhibitor accelerated the effect of eosinophils on macrophage polarization. Our results demonstrate that eosinophils exert anti-inflammatory effects in arthritis by inducing M2 macrophage polarization via inhibiting the IκB/P38 MAPK signaling pathway.  相似文献   

11.
Rheumatoid arthritis is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We generated transgenic rice seeds expressing three types of altered peptide ligands (APL) and the T cell epitope of type II collagen (CII256–271). When these transgenic rice and non-transgenic rice seeds were orally administrated to DBA/1?J mice once a day for 14?days, followed by immunization with CII, the clinical score of collagen-induced arthritis (CIA) was reduced and inflammation and erosion in the joints were prevented in mice fed APL7 transgenic rice only. IL-10 production against the CII antigen significantly increased in the splenocytes and iLN of CIA mice immunized with the CII antigen, whereas IFN-γ, IL-17, and IL-2 levels were not altered. These results suggest that IL-10-mediated immune suppression is involved in the prophylactic effects caused by transgenic rice expressing APL7.  相似文献   

12.
Antigen presenting cells (APCs) play an important role in arthritis and APC specific gene therapeutic targeting will enable intracellular modulation of cell activity. Viral mediated overexpression is a potent approach to achieve adequate transgene expression levels and lentivirus (LV) is useful for sustained expression in target cells. Therefore, we studied the feasibility of lentiviral mediated targeting of APCs in experimental arthritis. Third generation VSV-G pseudotyped self-inactivating (SIN)-LV were injected intravenously and spleen cells were analyzed with flow cytometry for green fluorescent protein (GFP) transgene expression and cell surface markers. Collagen-induced arthritis (CIA) was induced by immunization with bovine collagen type II in complete Freund''s adjuvant. Effect on inflammation was monitored macroscopically and T-cell subsets in spleen were analyzed by flow cytometry. Synovium from arthritic knee joints were analyzed for proinflammatory cytokine expression. Lentiviruses injected via the tail vein preferentially infected the spleen and transduction peaks at day 10. A dose escalating study showed that 8% of all spleen cells were targeted and further analysis showed that predominantly Ly6C+ and F4/80+ cells in spleen were targeted by the LV. To study the feasibility of blocking TAK1-dependent pathways by this approach, a catalytically inactive mutant of TAK1 (TAK1-K63W) was overexpressed during CIA. LV-TAK1-K63W significantly reduced incidence and arthritis severity macroscopically. Further histological analysis showed a significant decrease in bone erosion in LV-TAK1-K63W treated animals. Moreover, systemic Th17 levels were decreased by LV-TAK1-K63W treatment in addition to diminished IL-6 and KC production in inflamed synovium. In conclusion, systemically delivered LV efficiently targets monocytes and macrophages in spleen that are involved in autoimmune arthritis. Moreover, this study confirms efficacy of TAK1 targeting in arthritis. This approach may provide a valuable tool in targeting splenic APCs, to unravel their role in autoimmune arthritis and to identify and validate APC specific therapeutic targets.  相似文献   

13.
Although the pathogenesis of collagen-induced arthritis (CIA), a model of rheumatoid arthritis, is mediated by both collagen-specific CD4(+) T cells and Ab specific for type II collagen (CII), the role of CII-specific T cells in the pathogenesis of CIA remains unclear. Using tetrameric HLA-DR1 with a covalently bound immunodominant CII peptide, CII(259-273), we studied the development of the CII-specific T cell response in the periphery and arthritic joints of DR1 transgenic mice. Although the maximum number of DR1-CII-tetramer(+) cells was detected in draining lymph nodes 10 days postimmunization, these T cells accounted for only 1% or less of the CD4(+) population. After day 10, their numbers gradually decreased, but were still detectable on day 130. Examination of TCR expression and changes in CD62L, CD44(high), and CD69 expression by these T cells indicated that they expressed a limited TCR-BV repertoire and had clearly undergone activation. RT-PCR analysis of cytokine expression by the tetramer(+) T cells compared with tetramer(-) cells indicated the tetramer(+) cells expressed high levels of Th1 and proinflammatory cytokines, including IL-2, IFN-gamma, IL-6, TNF-alpha, and especially IL-17. Additionally, analysis of the synovium from arthritic paws indicated that the same CD4(+)/BV8(+)/BV14(+)/tetramer(+) T cells were present in the arthritic joints. These data demonstrate that although only small numbers of CII-specific T cells are generated during the development of CIA, these cells express very high levels of cytokine mRNA and appear to preferentially migrate to the arthritic joint, indicating a potential direct role of CII-specific T cells in the pathogenesis of CIA.  相似文献   

14.
Chronic inflammatory autoimmune diseases such as diabetes, experimental autoimmune encephalomyelitis, and collagen-induced arthritis (CIA) are associated with type 1 (Th1, Tc1) T cell-dependent responses against autoantigens. Immune deviation toward type 2 (Th2, Tc2) response has been proposed as a potential means of gene therapy or immunomodulation to treat autoimmune diseases based on evidence that type 2 cytokines can prevent or alleviate these conditions. In this report we assessed the effects of elevated type 2 responses on CIA using transgenic mice expressing an IL-2R beta/IL-4R alpha chimeric cytokine receptor transgene specifically in T cells. In response to IL-2 binding, this chimeric receptor transduces IL-4-specific signals and dramatically enhances type 2 responses. In contrast to published reports of Th2-mediated protection, CIA was exacerbated in IL-2R beta/IL-4R alpha chimeric receptor transgenic mice, with increased disease incidence, severity, and earlier disease onset. The aggravated disease in transgenic mice was associated with an increase in type 2 cytokines (IL-4, IL-5, IL-10) and an increase in collagen-specific IgG1 levels. However, IFN-gamma production is not affected significantly in the induction phase of the disease. There is also an extensive eosinophilic infiltration in the arthritic joints of the transgenic animal, suggesting a direct contribution of type 2 response to joint inflammation. Taken together, our findings provide novel evidence that enhancement of a polyclonal type 2 response in immunocompetent hosts may exacerbate an autoimmune disease such as CIA, rather than serving a protective role. This finding raises significant caution with regard to the potential use of therapeutic approaches based on immune deviation toward type 2 responses.  相似文献   

15.
Collagen-induced arthritis (CIA) and proteoglycan-induced arthritis (PGIA) are murine models for rheumatoid arthritis both in terms of their pathology and genetics. Using the F(2) hybrids of the CIA-susceptible, but PGIA-resistant DBA/1 mice, and the CIA-resistant, but PGIA-susceptible BALB/c mice, our goals were to 1) identify both model-specific and shared loci that confer disease susceptibility, 2) determine whether any pathophysiological parameters could be used as markers that distinguish between nonarthritic and arthritic mice, and 3) analyze whether any immune subtraits showed colocalization with arthritis-related loci. To identify chromosomal loci, we performed a genome scan on 939 F(2) hybrid mice. For pathophysiological analyses, we measured pro- and anti-inflammatory cytokines (IL-1, IL-6, TNF-alpha, IFN-gamma, IL-4, IL-10, IL-12), Ag-specific T cell proliferation and IL-2 production, serum IgG1 and IgG2 levels of both auto- and heteroantibodies, and soluble CD44. In addition to multiple CIA- and PGIA-related loci identified in previous studies, we have identified nine new CIA- and eight new PGIA-linked loci. Comprehensive statistical analysis demonstrated that IL-2 production, T cell proliferation, and IFN-gamma levels differed significantly between arthritic and nonarthritic animals in both CIA and PGIA populations. High levels of TNF-alpha, IFN-gamma, IL-2, and Ab production were detected in F(2) hybrids with CIA, whereas T cell proliferation, IL-2 and IFN-gamma production, and a shift to IgG2a isotype were more characteristic of PGIA. Quantitative trait loci analysis demonstrated colocalization of numerous immune subtraits with arthritis-related traits. Quantitative trait loci on chromosomes 5, 10, 17, 18, and X were found to control arthritis in both models.  相似文献   

16.
Interleukin (IL)-10 is an anti-inflammatory cytokine that has great potential for use in the treatment of inflammatory and immune illnesses. In this study, gene transfer was used to induce IL-10 transgene expression in murine lungs for treatment of endotoxin-induced lung inflammation. Gene transfer was performed with a cytomegalovirus (CMV)-IL-10 plasmid with the aid of the liposomal agents LipofectAMINE and N-[1-(2,3-dioleoyl)propyl]-N,N, N-trimethylammonium methylsulfate (DOTAP). Administration of the endotoxin caused a marked increase in lung inflammation as indicated by increased tumor necrosis factor (TNF)-alpha release and neutrophil count. Pretreatment of the mice with IL-10 plasmid with and without LipofectAMINE had no inhibitory effect on lung inflammation and IL-10 transgene expression. LipofectAMINE by itself induced lung inflammation, an effect that was not observed with DOTAP. IL-10 plasmid when codelivered with DOTAP expressed biologically active IL-10 protein and caused a reduction in endotoxin-induced inflammation. Transgene expression was observed as early as 3 h after administration, peaked at 12 h, and declined thereafter. We conclude that IL-10 gene transfer is a feasible approach for the treatment of lung inflammation.  相似文献   

17.
Madecassoside (MA), a triterpenoid product isolated from Centella asiatica, has been described to exhibit antioxidant and anti-inflammatory activities. The present study was undertaken to determine whether madecassoside (MA) is efficacious against collagen-induced arthritis (CIA) in mice and its possible mechanisms. DBA/1J mice were immunized with bovine type II collagen and treated with MA (3, 10 and 30 mg/kg d, i.g.) from days 21 to 42 after immunization. Arthritis was evaluated by hind paw swelling, polyarthritis index, and histological examination. In vitro proliferation of spleen cells was examined using 3-[4,5-dimethylthylthiazol-2-yl]-2, 5-diphenyltetrazoliumbromide (MTT) assay. Plasma levels of cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10) and the expression of prostaglandin E2 (PGE2), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) in synovial tissues were also determined. The results showed that comparing with untreated CIA mice, treated with MA dose-dependently suppressed the clinical arthritis score and joints tissues pathological damage, reduced the proliferation of spleen cells, plasma levels of TNF-α and IL-6, synovial tissues PGE2 production and COX-2 protein expression, however, the expression of COX-1 in symovial tissues did not change and the plasma levels of IL-10 were increased. These results suggest that MA can effectively alleviate inflammatory response on CIA, and anti-inflammatory effects of MA can be attributed, at least partially, to the inhibition of pro-inflammatory mediators, including COX-2 expression, PGE2 production, TNF-α and IL-6 levels and the up-regulation anti-inflammatory molecule IL-10.  相似文献   

18.
Pan RY  Xiao X  Chen SL  Li J  Lin LC  Wang HJ  Tsao YP 《Journal of virology》1999,73(4):3410-3417
Rheumatoid arthritis (RA) is a systemic autoimmune disease affecting 1% of the world's population, with significant morbidity and mortality. In this study, we investigated a recombinant adeno-associated virus (rAAV) vector for its potential application in RA gene therapy. rAAV encoding Escherichia coli beta-galactosidase was injected into rat joints which had already been induced into acute arthritis after local lipopolysaccharide (LPS) administration, and the efficiency of in vivo transduction was evaluated. We observed a striking correlation between vector transgene expression and disease severity in arthritic joints. The inflammatory reaction peaked at 3 to 7 days after LPS treatment, and, at the same time, 95% of the synoviocytes had high-level transgene expression. Gene expression diminished to the basal level (5%) when the inflammation subsided at 30 days after LPS treatment. More importantly, the diminished transgene expression could be efficiently reactivated by a repeated insult. The transgene expression in normal joints transduced with rAAV remained low for a long period of time (30 days) but could still be induced to high levels (95%) at 3 to 7 days after LPS treatment. This is the first demonstration of disease state-regulated transgene expression. These findings strongly support the feasibility of therapeutic as well as preventative gene transfer approaches for RA with rAAV vectors containing therapeutic genes, which are expected to respond primarily to the disease state of the target tissue.  相似文献   

19.
The objective of these studies was to examine collagen-induced arthritis (CIA) in C57BL/6 mice transgenic for the rodent complement regulatory protein complement receptor 1-related gene/protein y (Crry) (Crry-Tg), a C3 convertase inhibitor. The scores for clinical disease activity and for histological damage in the joints were both significantly decreased in Crry-Tg mice in comparison to wild-type (WT) littermates. The production of both IgG1 and IgG2a anti-collagen Abs was reduced in the Crry-Tg mice, although spleen cell proliferation in response to collagen type II was not altered. The production of IFN-gamma, TNF-alpha, and IL-1beta by LPS-stimulated spleen cells was decreased, and IL-10 was increased, in cells from Crry-Tg mice in comparison to WT. The steady-state mRNA levels for IFN-gamma, TNF-alpha, and IL-1beta were all decreased in the joints of Crry-Tg mice in comparison to WT. The synovium from Crry-Tg mice without CIA contained the mRNA for the Crry transgene, by RT-PCR, and the synovium from transgenic mice with CIA exhibited little deposition of C3 protein by immunohistological analysis. These results suggest that suppression of CIA in Crry-Tg mice may be due to enhanced synthesis of Crry locally in the joint with decreased production of proinflammatory cytokines.  相似文献   

20.
Previous studies have reported that low molecular mass HA and highly polymerized HA respectively elicited pro- and anti-inflammatory responses by modulating the toll-like receptor 4 (TLR-4) and the TLR-2. The activation of TLR-4 and TLR-2 mediated by collagen-induced arthritis (CIA) induces the myeloid differentiation primary response protein (MyD88) and the tumor necrosis factor receptor-associated factor 6 (TRAF6), and ends with the liberation of NF-kB which, in turn, stimulates pro-inflammatory cytokine production. The aim of this study was to investigate the influence of high molecular weight HA at different concentrations on TLR-4 and TLR-2 modulation in CIA in mice. Arthritis was induced in mice via intradermal injection of an emulsion containing bovine type II collagen in complete Freund's adjuvant. Mice were treated with HA intraperitoneally daily for 30 days. CIA increased TLR-4, TLR-2, MyD88 and TRAF6 mRNA expression and the related protein in the cartilage of arthritic joints. High levels of both mRNA and related protein were also detected for tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL-1-β), interleukin-17 (IL-17), matrix metalloprotease-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in the joint of arthritic mice. HA treatment significantly limited CIA incidence and decreased all the parameters up-regulated by CIA. The improvement of biochemical parameters was also supported by histological analysis, plasma and synovial fluid HA levels. These results suggest that the TLR-4 and TLR-2 play an important role in the arthritis mechanism and the interaction/block of HA at high molecular mass may reduce inflammation and cartilage injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号