首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure of potato tubers formed during spaceflight   总被引:3,自引:1,他引:2  
Potato (Solanum tuberosum L. cv. Norland) explants, consistingof a leaf, axillary bud, and small stem segment, were used asa model system to study the influence of spaceflight on theformation of sessile tubers from axillary buds. The explantswere flown on the space shuttle Columbia (STS-73, 20 Octoberto 5 November 1995) in the ASTROCULTURETM flight package, whichprovided a controlled environment for plant growth. Light andscanning electron microscopy were used to compare the preciselyordered tissues of tubers formed on Earth with those formedduring spaceflight. The structure of tubers produced duringspaceflight was similar to that of tubers produced in a controlexperiment. The size and shape of tubers, the geometry of tubertissues, and the distribution of starch grains and proteinaceouscrystals were comparable In tubers formed in both environments.The shape, surface texture, and size range of starch grainsfrom both environments were similar, but a greater percentageof smaller starch grains formed in spaceflight than on Earth.Since explant leaves must be of given developmental age beforetubers form, instructions regarding the regular shape and orderedtissue geometry of tubers may have been provided in the presenceof gravity. Regardless of when the signalling occurred, gravitywas not required to produce a tuber of typical structure. Key words: Spaceflight, development, potato tuber, microgravity  相似文献   

2.
Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During the 16 d flight of space shuttle Columbia (STS-73), the axillary bud of each explant developed into a mature tuber. Upon return to Earth, tuber slices were examined by transmission electron microscopy. Results showed that the cell ultrastructure of flight-grown tubers could not be distinguished from that of tuber cells grown in the same growth unit on the ground. No differences were observed in cellular features such as protein crystals, plastids with starch grains, mitochondria, rough ER, or plasmodesmata. Cell wall structure, including underlying microtubules, was typical of ground-grown plants. Because cell walls of tubers formed in space were not required to provide support against the force due to gravity, it was hypothesized that these walls might exhibit differences in wall components as compared with walls formed in Earth-grown tubers. Wall components were immunolocalized at the TEM level using monoclonal antibodies JIM 5 and JIM 7, which recognize epitopes of pectins, molecules thought to contribute to wall rigidity and cell adhesion. No difference in presence, abundance or distribution of these pectin epitopes was seen between space- and Earth-grown tubers. This evidence indicates that for the parameters studied, microgravity does not affect the cellular structure of plants grown under controlled environmental conditions.  相似文献   

3.
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.  相似文献   

4.
Transgenic potato tubers that overexpressed either a cytosolic or an apoplastic invertase in the wild type or AGPase antisense background were used to analyse the effect of invertase activity on cell expansion, starch granule formation and turgor pressure during tuber development. Although the transgenic plants did not develop a visible phenotype in aerial regions the size and number of tubers were significantly modified in the various lines. Transmission electron and light microscopy were performed to monitor starch grain size and number, cell size and cell wall thickness. Water potential, osmotic pressure, and indirectly, turgor pressure were determined during the final stages of tuber development. Glucose levels were high in transgenic tubers that overexpressed a yeast-derived invertase. The number of starch grains per cell was almost identical in all transgenic lines. However, the amount of starch was modified in the transgenics as compared to the wild type. As expected, the size of starch grains was reduced in all lines that expressed an AGPase antisense mRNA. These results indicate that invertase activity and glucose levels do not affect initiation of starch grain formation during the early stages of tuber development, but growth of starch corns in the later stages of tuber maturation.  相似文献   

5.
Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.  相似文献   

6.
Summary The involvement of free and conjugated polyamines in tuber formation was studied in in vitro cultured node explants ofSolanum tuberosum cv. Superior. Tubers developed from the axillary buds in 100% of the explants cultured in MS medium containing high sucrose levels and supplemented with kinetin (Kin) and chlorocholine chloride (CCC). The addition of growth regulators was not essential for tuber formation, although smaller tubers were formed in the medium devoid of Kin and CCC. Tuber formation was inhibited in about 75% of node explants treated with 0.5 mM difluoromethylornithine (DFMO), a specific and irreversible inhibitor of ornithine decarboxylase. The inhibitory effect of DFMO was almost completely reversed by putrescine addition. Addition of difluoromethylarginine (DFMA), the analogous inhibitor of arginine decarboxylase, had no effect on tuber formation. DFMO, but not DFMA, also inhibited the development of axillary buds into shoots in light-grown node explants. Aminooxyphenylpropionic acid (0.1 to 0.25 mM), an inhibitor of phenylalanine ammonia lyase, caused a sharp reduction in cinnamoyl putrescines, but had no effect on tuber formation. Our results suggest that hydroxycinnamic acids are not causal in tuber formation but may serve as polyamine storage pools. Our findings support the hypothesis that polyamines derived via the ornithine decarboxylase-mediated pathway are necessary for tuber formation in vitro, probably at the early phase of morphogenesis involving active cell division.  相似文献   

7.
何首乌块根中异常结构的形成过程   总被引:4,自引:1,他引:3  
何首乌的块根是一种常用的中药,块根内具有异常的次生结构。在块根的横切面上,自外至内依次为周皮、薄壁组织、排列成一圈大小不等的异常周韧维管束和中央维管柱。在块根形成以前,根的初生和次生结构都是正常的。以后,通常由围绕在初生韧皮纤维束周围的中柱鞘和次生韧皮薄壁组织细胞形成异常形成层,产生异常维管束。此外,还发现少数由中央维管柱分支而成。在块根膨大过程中,束内外以及维管柱次生木质部的薄壁组织细胞也分裂并增大。从而使块根中薄壁组织占80%左右。上述变化过程在不定根的中部开始,向上、下两  相似文献   

8.
A family of immunologically identical glycoproteins with apparent molecular weights of approximately 40,000 are among the major tuber proteins of potato (Solanum tuberosum L.). These proteins, as purified by ion-exchange and affinity chromatography, have been given the trivial name `patatin.' To determine if patatin can be used as a biochemical marker to study the process of tuberization, its amount was measured in a variety of tissues by rocket immunoelectrophoresis and by enzyme-linked immunosorbent assay (ELISA).

Patatin comprises 40 to 45% of the soluble protein in tubers regardless of whether they are formed on underground stolons or from axillary buds of stem cuttings. Under normal conditions, patatin is present in only trace amounts, if at all, in leaves, stems, or roots of plants which are either actively forming tubers or which have been grown under long days to prevent tuberization. However, if tubers and axillary buds are removed, patatin can accumulate in stems and petioles. This accumulation occurred without any obvious tuber-like swelling and would occur even under long days. In all tissues containing large amounts of patatin, the other tuber proteins were also found as well as large amounts of starch.

  相似文献   

9.
Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.  相似文献   

10.
Certain combined characteristics of cellular structure and starch properties provide distinctions between varieties of potatoes and bear strong relation to their culinary qualities. Larger tissue cells and larger average starch granules are associated with mealiness. Smaller cells and starch granules characterize the less mealy and “waxy” varieties. Similarly, the same general relationships hold for the varietal characteristics of high vs. low solids and high vs. low starch contents. Within a variety, proportionately larger numbers of large starch granules are associated with tubers of high specific gravity, and more smaller granules, with low specific gravity. There also is a distinct reduction in percent of small granules during storage of tubers. Differences in starch granule size are accompanied by differences in amylose and amylopectin. Small granules contain less amylose and gel at higher temperatures than do the larger starch granules. Amylose content likewise appears to be a varietal characteristic. These variations in amylose content reflect fundamental differences in the properties of the starch gels formed when different varieties of potatoes are cooked. Likewise, there are similar distinctions between the starches within different tissue zones of individual tubers. Cell size also varies characteristically within different tuber regions. Starch gel properties may be manipulated during processing by such treatments as precooking-heating, chilling, freezing, and thawing. These treatments provide some measure of control of textural quality in the finished product. Additives such as stearates or glycerides complex readily with amylose and also influence gel properties and texture in processed potato products. Sucrose accumulated during tuber storage also may increase gel strength and influence texture. Varietal differences in cell structure and in starch granule size and composition offer opportunities for genetic exploitation. The merits of special processing for texture control vs. development of varieties for specific processed product qualities are briefly discussed.  相似文献   

11.
12.
Germinated tubers of selected cultivars Kera, Resy, Nicola and Oreb were made healthier by heat treatment. They were derived from germ explants on MS media with the addition of BAP 1 mg 1-1 and IAA 0.2 mg 1−1. After sufficient multiplication of stems, optimum conditions of the photoperiod were followed for the induction of axillary microtubers on stem segments in media with BAP 10 mg 1-1 and 8% sucrose. The ability of tuberization is different: the early cvs. Kera and Resy induce earlier tubers at a long photoperiod and late cvs. Nicola and Oreb tuber rather at a short photoperiod. In suitable photoperiods the inhibitory substances accelerate the induction of axillary tubers and limit the formation of adventitious roots. Synthetic inhibitors applied in induction media increase the number of the tubers. The quality of tubers was affected by the addition of a mixture of amino acids: aspartic, glutamic, lysine and proline in concentrations of 12.5, 25 and 50 mg.1-1 into the induction media. In the course of cultivation the types which were growing well, formed tubers and increased the volume were selected. The representation of amino acids in the tubers was not significantly affected, there was only an increase in proline. The higher content of amino acids was reflected in the increase of proteins in the tubers. The selected clones are further multiplied.  相似文献   

13.
14.
太子参微块根发育的解剖学与组织化学定位   总被引:1,自引:0,他引:1  
采用植物组织培养、解剖学及组织化学定位方法研究太子参试管微块根发育的形态结构与营养物质积累特征的结果表明:太子参微块根由组培苗膨大的腋芽基部长出的不定根发育而成,经历了初生结构与次生结构发育,其膨大加粗是由于不定根的次生生长。维管形成层向内形成大量的次生木质部构成微块根的主要部分。淀粉粒是太子参微块根的主要营养存储方式。随着微块根的次生生长,淀粉粒先在次生木质部薄壁细胞中形成,随后在次生韧皮薄壁细胞中也大量积累。膨大的微块根可以合成太子参皂苷,成熟微块根中次生韧皮部的皂苷含量略高于次生木质部。离体太子参微块根的生长发育和营养物质的积累与块根中的相同。  相似文献   

15.
Electron microscopy revealed that subjecting `Russet Burbank' potato (Solanum tuberosum L.) plants to 2 days of cool temperature growing conditions (18°C days/10°C nights) did not produce visible damage or changes in tuber pith tissue when compared to warm-grown tubers (23°C days/18°C nights). However, damage to some tuber pith cells was observed after 5 days of cool treatment. Eight days of cool treatment produced extensive alterations in cell structure. The cytoplasm of the cool-treated tuber pith cells had become highly vesiculated and there was evidence of complete destruction of amyloplast membranes and tonoplasts. In many cases the starch grains appeared to be undergoing hydrolysis suggesting total disruption of normal cell function. Sixteen days of cool treatment were sufficient to produce visible brown center development in all cool-grown tubers examined. Electron microscopy of these tissues revealed that, although some organelles were still present, the cytoplasm had become extremely vesiculated and lacked any resemblance to that of tissue from warm-grown tubers. Gross, irregular thickening of cell walls was also detected.  相似文献   

16.
A collection of 21 preserved tubers of the potato from 4 archaeological sites situated in the Casma Valley of Peru is illustrated and described. The collections from these sites date from the Preceramic Period (2000 B.C.) to the Initial Ceramic Period (1200 B.C.). Identification of the tuber remains was undertaken through a stud) of their starch grains. Comparative material used for this purpose included other archaeological collections of tuber remains from the sites of Chilca and Pachacamac, as well as the fresh and dried tubers of modern-day wild and cultivated potato species.  相似文献   

17.
The development of axillary buds of potato (Solanum tuberosum L.) plants, cultured in vitro, was analyzed. Depending on the composition of the culture medium, the buds developed into either tubers (medium with 8% sucrose), shoots (1% sucrose), or stolons (8% sucrose and 0.5 μM gibberellin). Endogenous sugar and starch levels, and key-enzymes involved in the conversion of sucrose to starch were determined at different stages of development. Moreover, the spatial distribution of sugar levels and enzyme activities were determined within the developing structures. Glucose and fructose decreased upon tuber formation, most noticeably in the swelling parts, where also starch accumulated. The activities of sucrose synthase, fructokinase and ADP-glucose pyrophosphorylase were highest under tuber-inducing conditions, the increase being confined to the tubers, and absent in the subtending stolons. It is concluded that changes in the measured parameters, observed under tuberizing conditions, are specifically related to the formation of the tuber, and are confined to the swelling part only. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Isolation,culture, and regeneration of plants from potato protoplasts   总被引:2,自引:0,他引:2  
A technique is described for the routine isolation of protoplasts from storage parenchyma cells of potato tubers grown in vitro. The protoplasts typically contained many starch grains. On culture, most of the starch grains were metabolised during the first 7 days, after which the cells began to divide. Following further culture, protoplast-derived colonies and calli were obtained, from which shoots and intact plants were regenerated. Cytological study of regenerated plants showed that the majority were octaploid or aneuploid at the octaploid level. This aspect is compared with plants regenerated from mesophyll protoplasts of potato. The use of tuber protoplasts for studies on tissue-specific transient gene expression of chimeric gene constructs, following their introduction into the protoplasts by electroporation, is discussed, together with the uses of tuber protoplasts in fundamental physiological and biochemical studies.  相似文献   

19.
Differential expression of potato tuber protein genes   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

20.
Single-node leaf cuttings from potatoes (Solanum tuberosum L.) cvs. Norland, Superior, Norchip, and Kennebec, were used to assess tuber induction in plants grown under 12, 16, and 20 h daily irradiation (400 micromol s-1 m-2 PPF). Leaf cuttings were taken from plants at four, six and 15 weeks after planting and cultured for 14 d in sand trays in humid environments. Tuber induction was determined by visually rating the type of growth at the attached axillary bud, and by measuring the accumulation of the major tuber protein, patatin, in the base of the petioles. Axillary buds from leaf cuttings of plants grown under the 12 h photoperiod consistently formed round, sessile tubers at the axils for all four cultivars at all harvests. Buds from cuttings of plants grown under the 16 and 20 h photoperiods exhibited mixed tuber, stolon, and leafy shoot growth. Patatin accumulation was highest in petioles of cuttings taken from 12 h plants for all cultivars at all harvests, with levels in 16 and 20 h cuttings approx. one-half that of the 12 h cuttings. Trends, both in visual ratings of axillary buds and in petiole patatin accumulation, followed the harvest index (ratio of tuber to total plant dry matter), suggesting that either method is an acceptable assay for tuber induction in the potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号