首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental manipulations of the energy content of marine invertebrate embryos have been useful in testing key assumptions of life history theory, especially those concerning relationships between egg size, length of the planktonic period, and juvenile size and quality. However, methods for such “allometric engineering” experiments have been available for only a limited set of taxa (those with regulative early development, e.g., cnidarians and echinoderms). Here, we describe a method for the reduction of embryo energy content in the spirally cleaving embryos of a marine annelid, Capitella teleta, by targeted deletion of endodermal precursor cells. Embryos of C. teleta in which up to three cells (the macromeres 3A, 3B, and 3C) were deleted formed morphologically normal lecithotrophic larvae that were much smaller than larvae developing from control embryos. Experimental larvae metamorphosed at high rates, forming juveniles that were smaller than control juveniles. Juveniles derived from treated embryos had functional midguts, ingested and digested food, and grew into sexually mature adults. These results are consistent with those from previous allometric engineering studies of echinoid echinoderms, which suggest that in facultatively planktotrophic or lecithotrophic species, little maternally derived energy is used for construction of the larval body; instead, the majority is allocated to the formation of a large, high‐quality juvenile. Cleavage programs are highly conserved among divergent spiralian taxa (e.g., molluscs, nemerteans, and platyhelminths), so this method will likely be applicable to a diverse set of embryos. Similar experiments carried out in these diverse taxa will be extremely useful for evaluating inferences on relationships between egg size, length of the planktonic period, and juvenile size and quality previously based only on experiments on echinoid echinoderms.  相似文献   

2.
Paul  Doughty 《Journal of Zoology》1996,240(4):703-715
In squamate reptiles there is an allometric pattern for small-bodied females to have smaller clutches and proportionally larger eggs than large-bodied females, and this pattern occurs both among and within species. The allometric patterns in two species of the gecko Gehyra were studied to see how evolutionary reductions in adult body size affect fecundity and offspring size among species, and how these changes affect allometric relationships within species. Gehyra dubia has two eggs per clutch (the typical clutch size for gekkonid lizards), whereas the smallerbodied G. variegata has a single egg per clutch. Within both species, egg size increased with female body size. The data are consistent with at least two mechanistic hypotheses: (1) that the width of the pelvis constrains egg size; and (2) in species with invariant clutch sizes, larger females can only allocate additional energy towards egg size and not number. More direct tests of these hypotheses are warranted. Miniaturization of body sizes in Gehyra is correlated with a clutch size reduction of 50% (from two to one), and a large (1.7-fold) compensatory increase in relative egg mass. However, the small-bodied G. variegata (one egg per clutch) had a lower relative clutch mass than did G. dubia. These findings have implications for understanding the influence of evolutionary reductions in body size on reproductive traits, and for allometric trends in squamate reptiles in general.  相似文献   

3.
SUMMARY Understanding the relationship between egg size, development time, and juvenile size is critical to explaining patterns of life-history evolution in marine invertebrates. Currently there is conflicting information about the effects of changes in egg size on the life histories of echinoid echinoderms. We sought to resolve this conflict by manipulating egg size and food level during the development of two planktotrophic echinoid echinoderms: the green sea urchin, Strongylocentrotus droebachiensis and the sand dollar, Echinarachnius parma . Based on comparative datasets, we predicted that decreasing food availability and egg size would increase development time and reduce juvenile size. To test our prediction, blastomere separations were performed in both species at the two-cell stage to reduce egg volume by 50%, producing whole- and half-size larvae that were reared to metamorphosis under high or low food levels. Upon settlement, age at metamorphosis, juvenile size, spine number, and spine length were measured. As predicted, reducing egg size and food availability significantly increased age at metamorphosis and reduced juvenile quality. Along with previous egg size manipulations in other echinoids, this study suggests that the relationship between egg size, development time, and juvenile size is strongly dependent upon the initial size of the egg.  相似文献   

4.
JS McAlister  AL Moran 《PloS one》2012,7(7):e41599
Egg size is one of the fundamental parameters in the life histories of marine organisms. However, few studies have examined the relationships among egg size, composition, and energetic content in a phylogenetically controlled context. We investigated the associations among egg size, composition, and energy using a comparative system, geminate species formed by the closure of the Central American Seaway. We examined western Atlantic (WA) and eastern Pacific (EP) species in three echinoid genera, Echinometra, Eucidaris, and Diadema. In the genus with the largest difference in egg size between geminates (Echinometra), the eggs of WA species were larger, lipid rich and protein poor compared to the smaller eggs of their EP geminate. In addition, the larger WA eggs had significantly greater total egg energy and summed biochemical constituents yet significantly lower egg energy density (energy-per-unit-volume). However, the genera with smaller (Eucidaris) or no (Diadema) differences in egg size were not significantly different in summed biochemical constituents, total egg energy, or energy density. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life history evolution. We show that even among closely-related taxa, large eggs cannot be assumed to be scaled-up small eggs either in terms of energy or composition. Although our data comes exclusively from echinoid echinoderms, this pattern may be generalizable to other marine invertebrate taxa. Because egg composition and egg size do not necessarily evolve in lockstep, selective factors such as sperm limitation could act on egg volume without necessarily affecting maternal or larval energetics.  相似文献   

5.
Organisms have limited resources available to invest in reproduction, causing a trade‐off between the number and size of offspring. One consequence of this trade‐off is the evolution of disparate egg sizes and, by extension, developmental modes. In particular, echinoid echinoderms (sea urchins and sand dollars) have been widely used to experimentally manipulate how changes in egg size affect development. Here, we test the generality of the echinoid results by (a) using laser ablations of blastomeres to experimentally reduce embryo energy in the asteroid echinoderms (sea stars), Pisaster ochraceus and Asterias forbesi and (b) comparing naturally produced, variably sized eggs (1.7‐fold volume difference between large and small eggs) in A. forbesi. In P. ochraceus and A. forbesi, there were no significant differences between juveniles from both experimentally reduced embryos and naturally produced eggs of variable size. However, in both embryo reduction and egg size variation experiments, simultaneous reductions in larval food had a significant and large effect on larval and juvenile development. These results indicate that (a) food levels are more important than embryo energy or egg size in determining larval and juvenile quality in sea stars and (b) the relative importance of embryo energy or egg size to fundamental life history parameters (time to and size at metamorphosis) does not appear to be consistent within echinoderms.  相似文献   

6.
Evolutionary change from planktotrophic to lecithotrophic development in echinoderms is closely tied to an increase in maternal provisioning. We provide the first data on the major energetic constituents in the eggs of two ophiuroids, the planktotroph Ophionereis fasciata (egg diameter 103 microm) and the lecithotroph O. schayeri (egg diameter 248 microm), to document changes in maternal investment associated with the switch to lecithotrophy in O. schayeri. Lipid classes in the eggs of the two species did not differ except for the presence of small amounts of wax esters in the eggs of O. schayeri. Production of a large egg in O. schayeri is mostly due to enhanced deposition of one energy-storage lipid, triglyceride. The eggs of O. schayeri are not simply scaled-up versions of the ancestral-type eggs of O. fasciata. The relationship between lipid and protein content and egg volume conformed to the relationship previously established for echinoderm eggs. Surprisingly, total lipid and protein data for the eggs of O. schayeri grouped with data for the eggs of planktotrophic echinoderms. The eggs of O. schayeri are small compared with those of other echinoderms with lecithotrophic development, and their energetic contents may approach the minimum provisions necessary to permit development without feeding.  相似文献   

7.
We tested the hypothesis that egg size should evolve in sexually dimorphic birds to reduce costs associated with more rapid growth by nestlings of the larger sex. Consistent with this hypothesis, we found that in species in which males were larger, females laid proportionately larger eggs as sexual size dimorphism increased. However, this result was also consistent with the hypothesis that egg size varied allometrically with both male and female body size. Furthermore we found that in species in which females were larger, relative egg size decreased as size dimorphism increased, which is consistent with the “allometry hypothesis” but not the “cost-reduction hypothesis. That male body size contributes to the allometric relationship between egg size and body size suggests that the basis for the allometric relationship is not wholly a mechanical one stemming from the physical requirements of developing, transporting, and laying an egg of a particular size. Rather, the relationship seems likely to be tied more directly to body size itself the tact that male body size influences a female trait suggests that egg size–body size relationships otter some scope for investigating the basis for allometric relationships in general.  相似文献   

8.
Morphological traits often covary within and among species according to simple power laws referred to as allometry. Such allometric relationships may result from common growth regulation, and this has given rise to the hypothesis that allometric exponents may have low evolvability and constrain trait evolution. We formalize hypotheses for how allometry may constrain morphological trait evolution across taxa, and test these using more than 300 empirical estimates of static (within‐species) allometric relations of animal morphological traits. Although we find evidence for evolutionary changes in allometric parameters on million‐year, cross‐species time scales, there is limited evidence for microevolutionary changes in allometric slopes. Accordingly, we find that static allometries often predict evolutionary allometries on the subspecies level, but less so across species. Although there is a large body of work on allometry in a broad sense that includes all kinds of morphological trait–size relationships, we found relatively little information about the evolution of allometry in the narrow sense of a power relationship. Despite the many claims of microevolutionary changes of static allometries in the literature, hardly any of these apply to narrow‐sense allometry, and we argue that the hypothesis of strongly constrained static allometric slopes remains viable.  相似文献   

9.
Life-history models for marine invertebrate larvae generally predict a dichotomy in egg size in different species: eggs should be either minimal in size or large enough to support development fully without larval feeding. This prediction is contradicted, however, by the empirical observation of wide, continuous variation in egg size between these extremes. The prediction of dichotomy rests on the assumption of a negative linear relationship between egg size and development time. Here, I present a simple model in which development time is inversely proportional to egg size. Incorporating this relationship into an optimality model produces predictions of intermediate rather than extreme egg size. Modeled variations in mortality, food availability, fertilization rates, and temperature all produce continuous shifts in the value of the intermediate optimal size, in direct contrast to those produced by previous models, which predict shifts between two extreme optima. Empirical data on echinoid egg size and development time strongly support the model's assumption of an inverse proportional relationship between egg size and development time. A composite phylogeny is constructed of the 37 species for which egg size, development time, water temperature, and phylogenetic relatedness are known. Independent contrasts are made of the evolutionary changes in egg size and development time. This analysis indicates that evolutionary shifts in development time are correlated with the inversely proportional shifts in egg size assumed in the model. The assumption of a negative linear relationship used in previous models is rejected. This model provides a potential explanation for intraspecific variation in egg size along environmental gradients, sympatric differences in egg size among species, and biogeographic trends in egg size and development mode across taxa.  相似文献   

10.
Initial offspring size is a fundamental component of absolute growth rate, where large offspring will reach a given adult body size faster than smaller offspring. Yet, our knowledge regarding the coevolution between offspring and adult size is limited. In time‐constrained environments, organisms need to reproduce at a high rate and reach a reproductive size quickly. To rapidly attain a large adult body size, we hypothesize that, in seasonal habitats, large species are bound to having a large initial size, and consequently, the evolution of egg size will be tightly matched to that of body size, compared to less time‐limited systems. We tested this hypothesis in killifishes, and found a significantly steeper allometric relationship between egg and body sizes in annual, compared to nonannual species. We also found higher rates of evolution of egg and body size in annual compared to nonannual species. Our results suggest that time‐constrained environments impose strong selection on rapidly reaching a species‐specific body size, and reproduce at a high rate, which in turn imposes constraints on the evolution of egg sizes. In combination, these distinct selection pressures result in different relationships between egg and body size among species in time‐constrained versus permanent habitats.  相似文献   

11.
We present a phylogenetic comparative study assessing the evolutionary determinants of egg size in the moth family Geometridae. These moths were found to show a strong negative allometric relationship between egg size and maternal body size. Using recently developed comparative methods based on an Ornstein-Uhlenbeck process, we show that maternal body size explains over half the variation in egg size. However, other determinants are less clear: ecological factors, previously hypothesized to affect egg size, were not found to have a considerable influence in the Geometridae. The limited role of such third factors suggests a direct causal link between egg size and body size rather than an indirect correlation mediated by some ecological factors. Notably, no large geometrid species lay small eggs. This pattern suggests that maternal body size poses a physical constraint on egg size, but within these limits, there appears to be a rather invariable selection for larger eggs.  相似文献   

12.
The factors determining hatchling mass (HM) are investigated in a wide range of birds and reptiles using regression analysis, analysis of covariance and comparative analysis by independent contrasts. In birds, initial egg mass (IEM) at laying is the most important factor affecting HM and phylogenetic relatedness has no significant effects on HM. Developmental maturity of the avian neonates did not affect the proportion of IEM converted into HM. For all reptile species, IEM also significantly affected HM but phylogenetic relatedness did not. By contrast, allometric relationships between IEM and HM in the different orders of reptiles were affected by shell type. The robustness of allometric relationships across taxa in birds and reptiles suggests that there is a physiological link between IEM and HM, which contrasts with that observed for the relationship between egg mass and incubation period. This result has significant implications for the inter-relationships between IEM and embryonic growth, which are discussed for birds and reptiles.  相似文献   

13.
Here we test the hypothesis that the relationship between egg mass at oviposition (IEM) and incubation period ( I p) is a function of the taxonomic relatedness of bird and reptile species. Allometric relationships between IEM and I p were examined for 1525 bird species and 201 reptilian species. Treating species as independent data revealed the allometric exponent linking I p to IEM to be 0.234 for birds and 0.138 for reptiles. However, ANCOVA revealed that within both birds and reptiles the elevation and slope of the regression lines were dependent on the taxonomic order studied, indicating that the exponents were confounded by the phylogenetic relatedness of species. Thus, allometric exponents were recalculated based on the method of comparative analysis using independent contrasts. This technique revealed that the allometric exponent in both birds and reptiles was confounded by phylogeny. In birds the allometric relationship between I p and IEM was almost halved to 0.122, whereas in reptiles the exponent increased to 0.185. Importantly, the results demonstrate that some results of allometric analyses can be artefacts of the method of analysis of the dataset. That for bird eggs I p is not determined in large part by egg mass allows new questions to be posed regarding the ecological and physiological factors affecting the length of incubation, and hence rates of embryonic growth, for different taxa and habitats.  相似文献   

14.
Patterns of sexual size dimorphism and body size in calanoid copepods are examined. We hypothesize that favorable conditions for development will result in large body size and high sexual size dimorphism among populations of a given species and that differences in this allometric relationship among species is governed by the male's role in insemination. We confirm that there is a greater advantage to large female size, normally the larger sex, when compared to males, hence leading to selection for developmental patterns favoring high size dimorphism. Individuals from populations of four centropagid copepod species were measured; other sizes were obtained from published sources. In the four species we examined, the relationships between prosome length and both clutch size and the ability to produce multiple clutches with one insemination were determined. Results show a trend toward hyperallometry in all centropagid species examined: sexual size dimorphism increases with increasing size. Large females produce larger clutches and more additional clutches on one insemination. That hyperallometry is not observed in diaptomid copepods may result from the greater role the male plays in reproduction. Males are needed for each clutch produced, hence the selective pressure to be larger is greater than that in the centropagidae.  相似文献   

15.
We use data from the literature to compare two statistical procedures for estimating mass (or size) of quadrupedal dinosaurs and other extraordinarily large animals in extinct lineages. Both methods entail extrapolation from allometric equations fitted to data for a reference group of contemporary animals having a body form similar to that of the dinosaurs. The first method is the familiar one of fitting a straight line to logarithmic transformations, followed by back-transformation of the resulting equation to a two-parameter power function in the arithmetic scale. The second procedure entails fitting a two-parameter power function directly to arithmetic data for the extant forms by nonlinear regression. In the example presented here, the summed circumferences for humerus plus femur for 33 species of quadrupedal mammals was the predictor variable in the reference sample and body mass was the response variable. The allometric equation obtained by back-transformation from logarithms was not a good fit to the largest species in the reference sample and presumably led to grossly inaccurate estimates for body mass of several large dinosaurs. In contrast, the allometric equation obtained by nonlinear regression described data in the reference sample quite well, and it presumably resulted in better estimates for body mass of the dinosaurs. The problem with the traditional analysis can be traced to change in the relationship between predictor and response variables attending transformation, thereby causing measurements for large animals not to be weighted appropriately in fitting models by least squares regression. Extrapolations from statistical models obtained by back-transformation from lines fitted to logarithms are unlikely to yield reliable predictions for body size in extinct animals. Numerous reports on the biology of dinosaurs, including recent studies of growth, may need to be reconsidered in light of our findings.  相似文献   

16.
We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species‐averaged values with individual‐based estimates which allow species to potentially occupy multiple size classes. For individual‐based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species‐based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual‐based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species‐based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic equivalence.  相似文献   

17.
Estimation and interpretation of egg provisioning in marine invertebrates   总被引:3,自引:0,他引:3  
Per-offspring maternal investment is an integral part of life-historytheory. To understand the evolution of per-offspring maternalinvestment in marine invertebrates, a number of mathematicalmodels have been developed. These models examine how selectionaffects the proportion of maternally derived egg energy usedto produce a newly metamorphosed juvenile (s) and make predictionsabout the distribution of s in nature. However, there are veryfew published values of s and therefore it is difficult to evaluatehow well these models match nature. We present several equationsto empirically estimate values of s for any group of marineinvertebrate, and use data from echinoderms to compare the differentequations. The calculations that directly estimate s requireinformation on the amount of egg energy, juvenile energy, andenergy metabolized during development. Currently, there arefew data available for directly estimating s, and thus generatingdistributions of s derived from direct estimates is not possible.Furthermore, the direct estimations of s are informative forplanktotrophy but not for lecithotrophy. We have developed anequation that can be used to directly estimate s for lecithotrophs.The calculations to indirectly estimate s only require egg energyor egg size for the species in question and the value of s andegg energy or size for a reference species. This reference speciesreplaces the need to measure juvenile energy and energy metabolizedduring larval development. Because egg energy or size is currentlyavailable for many species, the indirect estimates will be usefulfor generating distributions of s, and will allow comparisonswith models. Although these indirect methods are good for generatingdistributions of s, they do not provide reliable estimates ofs for any particular species. Estimating values of s to comparemodels is a critical gap in our current evaluations of marineinvertebrate life-history models.  相似文献   

18.
We re-examined data for field metabolic rates of varanid lizards and marsupial mammals to illustrate how different procedures for fitting the allometric equation can lead to very different estimates for the allometric coefficient and exponent. A two-parameter power function was obtained in each case by the traditional method of back-transformation from a straight line fitted to logarithms of the data. Another two-parameter power function was then generated for each data-set by non-linear regression on values in the original arithmetic scale. Allometric equations obtained by non-linear regression described the metabolic rates of all animals in the samples. Equations estimated by back-transformation from logarithms, on the other hand, described the metabolic rates of small species but not large ones. Thus, allometric equations estimated in the traditional way for field metabolic rates of varanids and marsupials do not have general importance because they do not characterize rates for species spanning the full range in body size. Logarithmic transformation of predictor and response variables creates new distributions that may enable investigators to perform statistical analyses in compliance with assumptions underlying the tests. However, statistical models fitted to transformations should not be used to estimate parameters of equations in the arithmetic domain because such equations may be seriously biased and misleading. Allometric analyses should be performed on values expressed in the original scale, if possible, because this is the scale of interest.  相似文献   

19.
It is a widespread notion that in arthropods female reproductive output is strongly affected by female size. In butterflies egg size scales positively with female size across species, suggesting a constraint imposed by maternal size. However, in intraspecific comparisons body size often explains only a minor part of the variation in progeny size. We here include representatives of various butterfly families to test the generality of this phenomenon across butterflies. Phenotypic correlations between egg and maternal body size were inconsistent across species: correlations were non-significant for Pararge aegeria and Lycaena tityrus, significantly positive for Papilio machaon, significantly negative for Araschnia levana, and contradictory for Pieris napi. Thus, there was no general pattern linking egg size to maternal size, e.g., caused by an allometric relationship. Consequently, there was at best limited evidence for maternal size acting as a morphological constraint on egg size within butterfly species. Realized fecundity depended on maternal size in P. napi and A. levana, but not in P. aegeria, suggesting that maternal size may affect egg number more strongly than egg size. Yet, variation in fecundity was primarily explained by variation in longevity as is expected for income breeders. Heritability estimates across species were rather similar for pupal mass (ranging between 0.14 and 0.19), but more variable for egg size (0.17–0.31).  相似文献   

20.
Measures of reproductive output in turtles are generally positively correlated with female body size. However, a full understanding of reproductive allometry in turtles requires logarithmic transformation of reproductive and body size variables prior to regression analyses. This allows for slope comparisons with expected linear or cubic relationships for linear to linear and linear to volumetric variables, respectively. We compiled scaling data using this approach from published and unpublished turtle studies (46 populations of 25 species from eight families) to quantify patterns among taxa. Our results suggest that for log–log comparisons of clutch size, egg width, egg mass, clutch mass, and pelvic aperture width to shell length, all scale hypoallometrically despite theoretical predictions of isometry. Clutch size generally scaled at ~1.7 to 2.0 (compared to an isometric expectation of 3.0), egg width at ~0.5 (compared to an expectation of 1.0), egg mass at ~1.1 to 1.3 (3.0), clutch mass at ~2.5 to 2.8 (3.0), and pelvic aperture width at 0.8–0.9 (1.0). We also found preliminary evidence that scaling may differ across years and clutches even in the same population, as well as across populations of the same species. Future investigators should aspire to collect data on all these reproductive parameters and to report log–log allometric analyses to test our preliminary conclusions regarding reproductive allometry in turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号