首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物中瞬时表达外源基因的新型侵染技术   总被引:1,自引:0,他引:1  
杨丽萍  金太成  徐洪伟  李华  周晓馥 《遗传》2013,35(1):111-117
由于瞬时表达系统的局限性使其不利于规模化生产的应用, 本文介绍了一种新型的瞬时表达侵染技术-种子吸收法在植物中进行外源蛋白的表达。利用种子自然吸收来源于TMV病毒载体的农杆菌重悬液在番茄中成功的表达了报告基因GFP, 并优化了影响基因表达的各种因素, 包括菌液重悬液浓度和其他侵染条件。与其它侵染方法相比, 该方法具有独特优势, 如操作过程简便, 有利于外源蛋白的规模化生产, 并能够进一步扩大植物生物反应器的宿主范围。我们推测种子吸收法将有利于重组药用蛋白在植物中的工业规模化生产。  相似文献   

2.
Upon infection, Tomato spotted wilt virus (TSWV) forms ribonucleoprotein particles (RNPs) that consist of nucleoprotein (N) and viral RNA. These aggregates result from the homopolymerization of the N protein, and are highly stable in plant cells. These properties feature the N protein as a potentially useful protein fusion partner. To evaluate this potential, the N protein was fused to the Aequorea victoria green fluorescent protein (GFP), either at the amino or carboxy terminus, and expressed in plants from binary vectors in Nicotiana benthamiana leaves were infiltrated with Agrobacterium tumefaciens and evaluated after 4 days, revealing an intense GFP fluorescence under UV light. Microscopic analysis revealed that upon expression of the GFP:N fusion a small number of large aggregates were formed, whereas N:GFP expression led to a large number of smaller aggregates scattered throughout the cytoplasm. A simple purification method was tested, based on centrifugation and filtration, yielding a gross extract that contained large amounts of N:GFP aggregates, as confirmed by GFP fluorescence and Western blot analysis. These results show that the homopolymerization properties of the N protein can be used as a fast and simple way to purify large amounts of proteins from plants.  相似文献   

3.
Hairy root cultures of Nicotiana benthamiana have been obtained by co-cultivation of leaf explants with Agrobacterium rhizogenes strain A4 harboring a binary vector plasmid, and transgenic nature of the obtained cultures was confirmed by PCR analysis. Transgenic plants were regenerated from hairy roots. The biomass yield of transgenic plants grown in vitro was almost two-fold higher than those of wild-type N. benthamiana plants. They differed from untransformed plants by short internodes, reinforced stem, thick and wrinkled leaves and more developed root system. The level of Agrobacterium-mediated transient expression of green fluorescent protein (GFP) in the regenerated plants was similar to that of untransformed plants.  相似文献   

4.
Transient expression of foreign genes by Agrobacterium infiltration is a versatile technique that can be used as a rapid tool for functional protein production in plants. A reproducible protocol of large-scale production of foreign proteins via the novel plant transient expression system in Pisum sativum L. was established in our study. Non-detached plants from soil-independent culture were used as the target organ, and vacuum infiltrating mediated by Agrobacterium tumefaciens harboring green fluorescent protein (GFP) gene was performed. Step-by-step optimization was performed and showed that the quality of plant material as well as agro-infiltration conditions were the major factors influencing the gene expression. Monitoring the transient GFP expression daily, the highest expression level was achieved on the 8th day post-infiltration. Evidence of anti-acidic fibroblast growth factor-single chain variable fragment (anti-aFGF-scFv) gene expression in pea seedling was also achieved using agro-mediated vacuum infiltration system. Our work proves that the system is suitable for the largescale production of pharmaceutical proteins. The in planta infiltration system described here provides a powerful tool to explore easily gene expression in Pisum sativum L. avoiding tissue culture steps and the labor-intensive generation of transgenic plants.  相似文献   

5.
We have developed a fully contained system for expressing recombinant proteins that is based on clonal root cultures and episomal expression vectors. Clonal root lines expressing green fluorescent protein (GFP) or human growth hormone were generated from Nicotiana benthamiana leaves infected with the tobacco mosaic virus-based vector 30B after exposure to Agrobacterium rhizogenes. These lines accumulated GFP at over 50 mg per kg fresh tissue, a level that is comparable with other plant production systems in early stage development. Accumulation of both hGH and GFP in the clonal root lines was sustained over a 3-year period, and in the absence of antibiotic selection. This technology shows promise for commercial production of vaccine antigens and therapeutic proteins in contained facilities.  相似文献   

6.
We determined the release in root exudates of human serum albumin (HSA), beta-glucuronidase (GUS), glycoprotein B (gB) from human cytomegalovirus, and green fluorescent protein (GFP) from genetically modified transgenic tobacco expressing the genes for these proteins in hydroponic culture and non-sterile soil. GUS, gB, and GFP were expressed in the plant but were not released in root exudates, whereas HSA was both expressed in the plant and released in root exudates, as shown by a 66.5-kDa band on SDS-PAGE and Western blot and confirmed by ELISA. Root exudates from GUS and gB plants showed no bands that could be attributed to these proteins on SDS-PAGE, and root exudates from GFP plants showed no fluorescence. The concentration of HSA in root exudates was estimated to be 0.021 ng ml(-1), whereas that in the plant biomass was estimated to be 0.087 ng ml(-1). The concentration of HSA in soil was estimated to be 0.049 ng g(-1). No significant differences in the number of microorganisms and the activity of selected enzymes were observed between rhizosphere soil of non-modified and HSA tobacco.  相似文献   

7.

Background and Aims

In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash.

Methods

The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively.

Key Results

Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots.

Conclusions

The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.  相似文献   

8.
Ex vitro composite plants: an inexpensive, rapid method for root biology   总被引:1,自引:0,他引:1  
Plant transformation technology is frequently the rate-limiting step in gene function analysis in non-model plants. An important tool for root biologists is the Agrobacterium rhizogenes-derived composite plant, which has made possible genetic analyses in a wide variety of transformation recalcitrant dicotyledonous plants. The novel, rapid and inexpensive ex vitro method for producing composite plants described in this report represents a significant advance over existing composite plant induction protocols, which rely on expensive and time-consuming in vitro conditions. The utility of the new system is validated by expression and RNAi silencing of GFP in transgenic roots of composite plants, and is bolstered further by experimental disruption, via RNAi silencing, of endogenous plant resistance to the plant parasitic nematode Meloidogyne incognita in transgenic roots of Lycopersicon esculentum cv. Motelle composite plants. Critical parameters of the method are described and discussed herein.  相似文献   

9.
Rapid protein-folding assay using green fluorescent protein.   总被引:23,自引:0,他引:23  
Formation of the chromophore of green fluorescent protein (GFP) depends on the correct folding of the protein. We constructed a "folding reporter" vector, in which a test protein is expressed as an N-terminal fusion with GFP. Using a test panel of 20 proteins, we demonstrated that the fluorescence of Escherichia coli cells expressing such GFP fusions is related to the productive folding of the upstream protein domains expressed alone. We used this fluorescent indicator of protein folding to evolve proteins that are normally prone to aggregation during expression in E. coli into closely related proteins that fold robustly and are fully soluble and functional. This approach to improving protein folding does not require functional assays for the protein of interest and provides a simple route to improving protein folding and expression by directed evolution.  相似文献   

10.
An efficient Agrobacterium-mediated transient transformation of Arabidopsis   总被引:1,自引:0,他引:1  
Agrobacterium tumefaciens-mediated transient transformation has been a useful procedure for characterization of proteins and their functions in plants, including analysis of protein-protein interactions. Agrobacterium-mediated transient transformation of Nicotiana benthamiana by leaf infiltration has been widely used due to its ease and high efficiency. However, in Arabidopsis this procedure has been challenging. Previous studies suggested that this difficulty was caused by plant immune responses triggered by perception of Agrobacterium. Here, we report a simple and robust method for Agrobacterium-mediated transient transformation in Arabidopsis. AvrPto is an effector protein from the bacterial plant pathogen Pseudomonas syringae that suppresses plant immunity by interfering with plant immune receptors. We used transgenic Arabidopsis plants that conditionally express AvrPto under the control of a dexamethasone (DEX)-inducible promoter. When the transgenic plants were pretreated with DEX prior to infection with Agrobacterium carrying a β-glucuronidase (GUS, uidA) gene with an artificial intron and driven by the CaMV 35S promoter, transient GUS expression was dramatically enhanced compared to that in mock-pretreated plants. This transient expression system was successfully applied to analysis of the subcellular localization of a cyan fluorescent protein (CFP) fusion and a protein-protein interaction in Arabidopsis. Our findings enable efficient use of Agrobacterium-mediated transient transformation in Arabidopsis thaliana.  相似文献   

11.
12.
Transformation of plant cells by Agrobacterium tumefaciens involves both bacterial virulence proteins and host proteins. We have previously shown that the Arabidopsis thaliana gene H2A-1 (RAT5), which encodes histone H2A-1, is involved in T-DNA integration into the plant genome. Mutation of RAT5 results in a severely decreased frequency of transformation, whereas overexpression of RAT5 enhances the transformation frequency (Mysore et al., 2000b). We show here that the expression pattern of RAT5 correlates with plant root cells most susceptible to transformation. As opposed to a cyclin-GUS fusion gene whose expression is limited to meristematic tissues, the H2A-1 gene is expressed in many non-dividing cells. Under normal circumstances, the H2A-1 gene is expressed in the elongation zone of the root, the region that is most susceptible to Agrobacterium transformation. In addition, when roots are incubated on medium containing phytohormones, a concomitant shift in H2A-1 expression and transformation susceptibility to the root base is observed. Inoculation of root segments with a transfer-competent, but not a transformation-deficient Agrobacterium strain induces H2A-1 expression. Furthermore, pre-treatment of Arabidopsis root segments with phytohormones both induces H2A-1 expression and increases the frequency of Agrobacterium transformation. Our results suggest that the expression of the H2A-1 gene is both a marker for, and a predictor of, plant cells most susceptible to Agrobacterium transformation.  相似文献   

13.
Simultaneous expression of multiple proteins in plants finds ample applications. Here, we examined the biotechnological application of native kex2p-like protease activity in plants for coordinate expression of multiple secretory proteins from a single transgene encoding a cleavable polyprotein precursor. We expressed a secretory red fluorescent protein (DsRed) or human cytokine (GMCSF), fused to a downstream green fluorescent protein (GFP) by a linker containing putative recognition sites of the kex2p-like protease in tobacco cells and referred to them as RKG and GKG cells, respectively. Our analyses showed that GFP is cleaved off the fusion proteins and secreted into the media by both RKG and GKG cells. The cleaved GFP product displayed the expected fluorescence characteristics. Using GFP immunoprecipitation and fluorescence analysis, the cleaved DsRed product in the RKG cells was found to be functional as well. However, DsRed was not detected in the RKG culture medium, possibly due to its tetramer formation. Cleaved and biologically active GMCSF could also be detected in GKG cell extracts, but secreted GMCSF was found to be only at a low level, likely because of instability of GMCSF protein in the medium. Processing of polyprotein precursors was observed to be similarly effective in tobacco leaf, stem and root tissues. Importantly, we also demonstrated that, via agroinfiltration, polyprotein precursors can be efficiently processed in plant species other than tobacco. Collectively, our results demonstrate the utility of native kex2p-like protease activity for the expression of multiple secretory proteins in plant cells using cleavable polyprotein precursors containing kex2p linker(s).  相似文献   

14.
15.
Large data sets are generated from plants by the various 'omics platforms. Currently, a limiting step in data analysis is the assessment of protein function and its translation into a biological context. The lack of robust high-throughput transformation systems for monocotyledonous plants, to which the vast majority of crop plants belong, is a major restriction and impedes exploitation of novel traits in agriculture. Here we present a stable root transformation system for barley, termed STARTS, that allows assessment of gene function in root tissues within 6 weeks. The system is based on the finding that a callus, produced on root induction medium from the scutellum of the immature embryo, is able to regenerate roots from single transformed cells by concomitant suppression of shoot development. Using Agrobacterium tumefaciens-mediated transfer of genes involved in root development and pathogenesis, we show that those calli regenerate large amounts of uniformly transformed roots for in situ functional analysis of newly expressed proteins.  相似文献   

16.
By fusing the genes encoding green fluorescent protein (GFP) and -glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.  相似文献   

17.
By fusing the genes encoding green fluorescent protein (GFP) and -glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.  相似文献   

18.
The CaMV 35S promoter is the most commonly used promoter for driving transgene expression in plants. Though it is presumed to be a constitutive promoter, some reports suggest that it is not expressed in all cell types. In addition, the information available on its expression profile in all possible cell and tissue types and during early stages of development is incomplete. We present here a detailed expression profile of this promoter investigated using the green fluorescent protein (GFP) gene as a reporter system in cotton during embryo development, and in all the vegetative and floral cell and tissue types. GFP expression was not detected during the early stages of embryogenesis. The first perceptible GFP expression was observed in a small area at the junction of hypocotyl and cotyledons in embryos at around 13 days after anthesis. The GFP fluorescence progressively became stronger and expanded throughout the cotyledon and hypocotyl as embryo development advanced. After germination, varying levels of promoter activity were observed in all cell and tissue types in the hypocotyl, cotyledon, stem, leaf, petiole, and root. The promoter was also expressed in all floral parts. Although cotton pollen exhibited a low level of greenish autofluorescence, it was possible to discern GFP-dependent fluorescence in some of the pollen from all the T0 plants examined. Developing cotton fibers also exhibited GFP fluorescence suggesting that the 35S promoter was active in these specialized epidermal cells. Thus, we show that the expression of the 35S promoter was developmentally regulated during embryogenesis and that beyond a certain stage during embryogenesis, the promoter was expressed in most cell and tissue types in cotton albeit at different levels.  相似文献   

19.
Hwang HH  Gelvin SB 《The Plant cell》2004,16(11):3148-3167
Agrobacterium tumefaciens uses a type IV secretion system (T4SS) to transfer T-DNA and virulence proteins to plants. The T4SS is composed of two major structural components: the T-pilus and a membrane-associated complex that is responsible for translocating substrates across both bacterial membranes. VirB2 protein is the major component of the T-pilus. We used the C-terminal-processed portion of VirB2 protein as a bait to screen an Arabidopsis thaliana cDNA library for proteins that interact with VirB2 in yeast. We identified three related plant proteins, VirB2-interacting protein (BTI) 1 (BTI1), BTI2, and BTI3 with unknown functions, and a membrane-associated GTPase, AtRAB8. The three BTI proteins also interacted with VirB2 in vitro. Preincubation of Agrobacterium with GST-BTI1 protein decreased the transformation efficiency of Arabidopsis suspension cells by Agrobacterium. Transgenic BTI and AtRAB8 antisense and RNA interference Arabidopsis plants are less susceptible to transformation by Agrobacterium than are wild-type plants. The level of BTI1 protein is transiently increased immediately after Agrobacterium infection. In addition, overexpression of BTI1 protein in transgenic Arabidopsis results in plants that are hypersusceptible to Agrobacterium-mediated transformation. Confocal microscopic data indicate that GFP-BTI proteins preferentially localize to the periphery of root cells in transgenic Arabidopsis plants, suggesting that BTI proteins may contact the Agrobacterium T-pilus. We propose that the three BTI proteins and AtRAB8 are involved in the initial interaction of Agrobacterium with plant cells.  相似文献   

20.
Macromolecular trafficking within the sieve element-companion cell complex, phloem unloading, and post-phloem transport were studied using the jellyfish green fluorescent protein (GFP). The GFP gene was expressed in Arabidopsis and tobacco under the control of the AtSUC2 promoter. In wild-type Arabidopsis plants, this promoter regulates expression of the companion cell-specific AtSUC2 sucrose-H+ symporter gene. Analyses of the AtSUC2 promoter-GFP plants demonstrated that the 27-kD GFP protein can traffic through plasmodesmata from companion cells into sieve elements and migrate within the phloem. With the stream of assimilates, the GFP is partitioned between different sinks, such as petals, root tips, anthers, funiculi, or young rosette leaves. Eventually, the GFP can be unloaded symplastically from the phloem into sink tissues, such as the seed coat, the anther connective tissue, cells of the root tip, and sink leaf mesophyll cells. In all of these tissues, the GFP can traffic cell to cell by symplastic post-phloem transport. The presented data show that plasmodesmata of the sieve element-companion cell complex, as well as plasmodesmata into and within the analyzed sinks, allow trafficking of the 27-kD nonphloem GFP protein. The data also show that the size exclusion limit of plasmodesmata can change during organ development. The results are also discussed in terms of the phloem mobility of assimilates and of small, low molecular weight companion cell proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号