首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study explores the signaling transduction cascade of ERK and p38 MAPK on regulating MAPK phosphatase-1 (MKP-1) and protein phosphatase 2A catalytic subunit α (PP2Acα) expression in caffeine-treated human leukemia U937 cells. Caffeine induced an increase in the intracellular Ca2 + concentration and ROS generation leading to p38 MAPK activation and ERK inactivation, respectively. Caffeine treatment elicited MKP-1 down-regulation and PP2Acα up-regulation. The transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) abolished the caffeine effect on MKP-1 and PP2Acα expression. Caffeine repressed ERK-mediated c-Fos phosphorylation but evoked p38 MAPK-mediated CREB phosphorylation. Knockdown of c-Fos and CREB by siRNA showed that c-Fos and CREB were responsible for MKP-1 and PP2Acα expression, respectively. Promoter and chromatin immunoprecipitating assay supported the role of c-Fos and CREB in regulating MKP-1 and PP2Acα expression. Moreover, transfection of dominant negative MKP-1 cDNA led to p38 MAPK activation and PP2Acα down-regulation in U937 cells, while PP2A inhibitor attenuated caffeine-induced ERK inactivation and MKP-1 down-regulation. Taken together, our data indicate that a reciprocal relationship between ERK-mediated MKP-1 expression and p38 MAPK-mediated PP2Acα expression crucially regulates ERK and p38 MAPK phosphorylation in U937 cells.  相似文献   

2.
At present, the current therapeutic strategy for apoptosis induction mainly relies on the administration of pharmacological apoptotic modulators. Apart from that, apoptosis can be induced by various external stimuli such as hyperthermia, ionizing radiation, and electric fields. Despite advantages, both physical and pharmacological approaches bear some limitations as well. The rationale of this study was to overcome the limitations by combining hyperthermia and apoptotic modulator ‘bortezomib’ (Velcade). Two types of human blood cancer cell lines were utilized: human leukemic monocyte lymphoma cell U937 line and peripheral blood mononuclear cells (PMBCs) derived from the patient diagnosed with acute myeloid leukemia. Prior to apoptosis experiments, cytotoxicity tests were performed at three types of temperature regimes (40 °, 42 ° and 44 °C). We observed a gradual inhibition of cell viability correlating with an increase of temperature and drug concentration in both cell lines. However, there was no significant difference between sham group and groups of leukemic PMBCs treated by high temperature (44 °C) and bortezomib. In U937 cells, combined treatment by heat shock and bortezomib led to an increase the number of cells underwent the late apoptosis stage. At the same time, similar treatment of PMBCs resulted in the stimulation of early apoptosis. Our data suggest that combination of bortezomib and hyperthermia enhances apoptosis induction in human cancer white blood cells, indicating a therapeutic potential for blood cancer therapy.  相似文献   

3.
《Process Biochemistry》2014,49(4):706-714
The chemokines eotaxin-1 (CCL11) and eotaxin-2 (CCL24), belonging to the CC chemokines family, play key roles in the inflammatory response, allergic asthma and other diseases. When expressed in Escherichia coli, chemokines are prone to form inclusion bodies devoid of biological activity, and it is hard to refold them properly. Here an expression and purification protocol for high-level production of soluble and biologically active CCL11 and CCL24 in E. coli has been established. A final yield of 8.7 mg/l for CCL11 and 3.9 mg/l for CCL24 has been obtained and the purified proteins were characterized with SDS-PAGE, mass spectrometry and circular dichroism. High binding affinity of purified chemokines with CC chemokine receptor type 3 (CCR3) has been confirmed with surface plasmon resonance (SPR) and the KD values are 3.7 × 10−7 M and 3.0 × 10−7 M, respectively, for CCL11 and CCL24. This report provides a straightforward strategy for the efficient production of soluble and biologically active chemokines in E. coli.  相似文献   

4.
《Cytokine》2010,49(3):295-302
Blood vessel growth is regulated by angiogenic and angiostatic CXC chemokines, and radiation is a vasculogenic stimulus. We investigated the effect of radiation on endothelial cell chemokine signaling, receptor expression, and migration and apoptosis. Human umbilical vein endothelial cells were exposed to a single fraction of 0, 5, or 20 Gy of ionizing radiation (IR). All vasculogenic chemokines (CXCL1–3/5–8) increased 3–13-fold after 5 or 20 Gy IR. 20 Gy induced a marked increase (1.6–4-fold) in angiostatic CXC chemokines. CXCR4 expression increased 3.5 and 7-fold at 48 h after 5 and 20 Gy, respectively. Bone marrow progenitor cell chemotaxis was augmented by conditioned media from cells treated with 5 Gy IR. Whereas 5 Gy markedly decreased intrinsic cell apoptosis (0 Gy = 16% ± 3.6 vs. 5 Gy = 4.5% ± 0.3), 20 Gy increased it (21.4% ± 1.2); a reflection of pro-survival angiogenic chemokine expression. Radiation induces a dose-dependent increase in pro-angiogenic CXC chemokines and CXCR4. In contrast, angiostatic chemokines and apoptosis were induced at higher (20 Gy) radiation doses. Cell migration improved significantly following 5 Gy, but not 20 Gy IR. Collectively, these data suggest that lower doses of IR induce an angiogenic cascade while higher doses produce an angiostatic profile.  相似文献   

5.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

6.
7.
The present study was aimed to investigate the effect of intensity modulated radiotherapy (IMRT) followed by treatment with inhibitor for p38 MAPK, SB203580 on the rate of proliferation in drug resistant MCF-7 breast cancer cells. Interestingly, the results from immuno histochemistry and western blot assays revealed higher level of distribution of activated p38 MAPK in the drug resistant breast cancer tissues compared to the primary tissues. Treatment of the drug resistant MCF-7 cells with SB203580 led to a significant decrease in the phosphorylation of p38 MAPK. Exposure to IMRT caused a significant decrease in the rate of proliferation in drug resistant MCF-7breast cancer cells (P < 0.05). MCF-7 cells were subjected to IMRT for 45 min followed by treatment with SB203580 for 12 h. The results from MTT assay revealed inhibition in the rate of proliferation of MCF-7 cells more efficiently compared to the IMRT or SB203580 when used separately (P < 0.02). The effect of IMRT and SB203580 on inhibition of MCF-7 cell proliferation showed synergistic relation. Since MAPK signaling pathway plays an important role in the development of drug resistance, therefore, inhibition of p38 MAPK activation by the combination of IMRT followed by treatment with inhibitor for p38 MAPK can be a promising strategy for breast cancer treatment. Thus combination of IMRT exposure and treatment with SB203580 can be used for the inhibition of drug resistant breast cancer.  相似文献   

8.
Cardiac dysfunction with progressive inflammation and fibrosis is a hallmark of Chagas disease caused by persistent Trypanosoma cruzi infection. Osteopontin (OPN) is a pro-inflammatory cytokine that orchestrates mechanisms controlling cell recruitment and cardiac architecture. Our main goal was to study the role of endogenous OPN as a modulator of myocardial CCL5 chemokine and MMP-2 metalloproteinase, and its pathological impact in a murine model of Chagas heart disease. Wild-type (WT) and OPN-deficient (spp1 ?/?) mice were parasite-infected (Brazil strain) for 100 days. Both groups developed chronic myocarditis with similar parasite burden and survival rates. However, spp1 ?/? infection showed lower heart-to-body ratio (P < 0.01) as well as reduced inflammatory pathology (P < 0.05), CCL5 expression (P < 0.05), myocyte size (P < 0.05) and fibrosis (P < 0.01) in cardiac tissues. Intense OPN labeling was observed in inflammatory cells recruited to infected heart (P < 0.05). Plasma concentration of MMP-2 was higher (P < 0.05) in infected WT than in spp1 ?/? mice. Coincidently, specific immunostaining revealed increased gelatinase expression (P < 0.01) and activity (P < 0.05) in the inflamed hearts from T. cruzi WT mice, but not in their spp1 ?/? littermates. CCL5 and MMP-2 induction occurred preferentially (P < 0.01) in WT heart-invading CD8+ T cells and was mediated via phospho-JNK MAPK signaling. Heart levels of OPN, CCL5 and MMP-2 correlated (P < 0.01) with collagen accumulation in the infected WT group only. Endogenous OPN emerges as a key player in the pathogenesis of chronic Chagas heart disease, through the upregulation of myocardial CCL5/MMP-2 expression and activities resulting in pro-inflammatory and pro-hypertrophic events, cardiac remodeling and interstitial fibrosis.  相似文献   

9.
In this study, a new series of bis-benzimidazole derivatives were designed and synthesized. Most of these new compounds showed significant anti-tumor activity in vitro compared to Hoechst 33258. Among them, the most potent compound 8 had the IC50 values of 0.56 μM for HL60 (Human promyelocytic leukemia cells) tumor cell line and 0.58 μM for U937 (Human leukemic monocyte lymphoma cells) tumor cell line. Subsequent toxicity study on human peripheral blood mononuclear cells (PBMC) showed that compound 8 exhibited less toxicity than 5-FU. We also found that apoptosis and autophagy were simultaneously induced by compound 8 in HL60 cells, and inhibition of autophagy by 3-MA decreased compound 8-induced apoptosis, indicating that they acted in synergy to exert tumor cell death.  相似文献   

10.
Recent reports have shown that antibiotics such as macrolide, aminoglycoside, and tetracyclines have immunomodulatory effects in addition to essential antibiotic effects. These agents may have important effects on the regulation of cytokine and chemokine production. However, the precise mechanism is unknown. This time, we used Multi Plex to measure the production of cytokines and chemokines following tetracycline treatment of lipopolysaccharide (LPS)-induced THP-1 cells. The signaling pathways were investigated with Western blotting analysis. Three tetracyclines significantly suppressed the expression of cytokines and chemokines induced by LPS. Minocycline (50 μg/ml), tigecycline (50 μg/ml), or doxycycline (50 μg/ml) were added after treatment with LPS (10 μg/ml). Tumor necrosis factor-α was downregulated to 16%, 14%, and 8%, respectively, after 60 min compared to treatment with LPS without agents. Interleukin-8 was downregulated to 43%, 32%, and 26% at 60 min. Macrophage inflammatory protein (MIP)-1α was downregulated to 23%, 33%, and 16% at 120 min. MIP-1β was downregulated to 21%, 11%, and 2% at 120 min. Concerning about signaling pathways, the mechanisms of the three tetracyclines might not be the same. Although the three tetracyclines showed some differences in the time course, tetracyclines modulated phosphorylation of the NF-κB pathway, p38 and ERK1/2/MAPK pathways, resulting in inhibition of cytokine and chemokine production. In addition, SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor) significantly suppressed the expression of TNF-α and IL-8 in LPS-stimulated THP-1 cells. And further, the NF-κB inhibitor, BAY11-7082, almost completely suppressed LPS-induced these two cytokines production. Thus, more than one signaling pathway may be involved in tetracyclines downregulation of the expression of LPS-induced cytokines and chemokines in THP-1 cells. And among the three signaling pathways, NF-κB pathway might be the dominant pathway on tetracyclines modification the LPS-induced cytokines production in THP-1 cells. In general, minocycline and doxycycline suppressed the production of cytokines and chemokines in LPS-stimulated THP-1 cell lines via mainly the inhibition of phosphorylation of NF-κB pathways. Tigecycline has the same structure as the other tetracyclines, however, it showed the different properties of cytokine modulation in the experimental time course.  相似文献   

11.
Background aimsBecause of the inflammatory nature and extensive stromal compartment in pancreatic tumors, we investigated the role of mesenchymal stromal cells (MSC) to engraft selectively in pancreatic carcinomas and serve as anti-tumor drug delivery vehicles to control pancreatic cancer progression.MethodsHuman pancreatic carcinoma cells, PANC-1, expressing renilla luciferase were orthotopically implanted into SCID mice and allowed to develop for 10 days. Firefly luciferase-transduced MSC or MSC expressing interferon (IFN)-β were then injected intraperitoneally weekly for 3 weeks. Mice were monitored by bioluminescent imaging for expression of renilla (PANC-1) and firefly (MSC) luciferase.ResultsMSC selectively homed to sites of primary and metastatic pancreatic tumors and inhibited tumor growth (P = 0.032). The production of IFN-β within the tumor site by MSC–IFN-β further suppressed tumor growth (P = 0.0000083). Prior studies indicated that MSC home to sites of inflammation; therefore, we sought to alter the tumor microenvironment through treatment with a potent anti-inflammatory agent. After treatment, inflammation-associated mediators were effectively down-regulated, including NFκB, vascular endothelial growth factor (VEGF) and interleukin (IL)-6 as well as chemokines involved in MSC migration (CCL3 and CCL25). Treatment with the anti-inflammatory agent CDDO-Me before and after MSC–IFN-β injections resulted in reduction of MSC in the tumors and reversed the positive effect of tumor inhibition by MSC–IFN-β alone (P = 0.041).ConclusionsThese results suggest that MSC exhibit innate anti-tumor effects against PANC-1 cells and can serve as delivery vehicles for IFN-β for the treatment of pancreatic cancer. However, these beneficial effects may be lost in therapies combining MSC with anti-inflammatory agents.  相似文献   

12.
The study was aimed to investigate the effect of baicalein, a flavonoid molecule isolated from the plant Oroxylum indicum on bladder cancer cell viability. The results revealed that baicalein treatment of T24 and 253J bladder cancer cells targeted the expression of mRNA and proteins corresponding to the anti-apoptotic genes. RT-PCR assay showed that anti-apoptotic genes were markedly over-expressed in the bladder cancer cells. Exposure of the bladder cancer cells to baicalein at 5 mg/mL doses for 72 h led to reduction in the expression of mRNA levels of antiapoptotic genes. In T24 cells, the levels of BCL2, Bcl-xL, XIAP and surviving was reduced by 65, 69, 58 and 72%, respectively. In T24 and 253J cells exposure to baicalein for 72 h resulted respectively in 39 and 46% reduction in cell viability. Baicalein treatment also induced apoptosis in the bladder cancer cells. In T24 and 253J cells baicalein treatment at 5 mg/mL for 72 h induced apoptosis in 79 and 86% cells respectively. Thus, baicalein mediated reduction in antiapoptotic gene expression inhibits viability and induces apoptosis in bladder cancer cells. Therefore, baicalein is of therapeutic importance for the development of bladder cancer treatment strategy.  相似文献   

13.
14.

Background

Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer characterized by invasion of carcinoma cells into dermal lymphatic vessels where they form tumor emboli over expressing adhesion molecule E-cadherin. Although invasion and metastasis are dynamic processes controlled by complex interaction between tumor cells and microenvironment the mechanisms by which soluble mediators may regulate motility and invasion of IBC cells are poorly understood. The present study investigated the effect of media conditioned by human monocytes U937 secreted cytokines, chemokines and growth factors on the expression of adhesion molecules E-cadherin and fibronectin of human IBC cell line SUM149. Furthermore, cytokines signaling pathway involved were also identified.

Results

U937 secreted cytokines, chemokines and growth factors were characterized by cytokine antibody array. The major U937 secreted cytokines/chemokines were interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1/CCL2). When SUM149 cells were seeded in three dimensional (3D) models with media conditioned by U937 secreted cytokines, chemokines and growth factors; results showed: 1) changes in the morphology of IBC cells from epithelial to migratory spindle shape branched like structures; 2) Over-expression of adhesion molecule fibronectin and not E-cadherin. Further analysis revealed that over-expression of fibronectin may be mediated by IL-8 via PI3K/Akt signaling pathway.

Conclusion

The present results suggested that cytokines secreted by human monocytes may promote chemotactic migration and spreading of IBC cell lines. Results also indicated that IL-8 the major secreted cytokine by U937 cells may play essential role in fibronectin expression by SUM149 cells via interaction with IL-8 specific receptors and stimulation of PI3K/Akt signaling pathway.  相似文献   

15.
BackgroundSex steroid hormones have been reported to induce inflammation causing dysregulation of cytokines in prostate cancer cells. However, the underlying epigenetic mechanism has not well been studied. The objective of this study was to evaluate the effect of sex steroid hormones on epigenetic DNA methylation changes in prostate cancer cells using a signature PCR methylation array panel that correspond to 96 genes with biological function in the human inflammatory and autoimmune signals in prostate cancer. Of the 96-gene panel, 32 genes showed at least 10% differentially methylation level in response to hormonal treatment when compared to untreated cells. Genes that were hypomethylated included CXCL12, CXCL5, CCL25, IL1F8, IL13RAI, STAT5A, CXCR4 and TLR5; and genes that were hypermethylated included ELA2, TOLLIP, LAG3, CD276 and MALT1. Quantitative RT-PCR analysis of select genes represented in a cytokine expression array panel showed inverse association between DNA methylation and gene expression for TOLLIP, CXCL5, CCL18 and IL5 genes and treatment of prostate cancer cells with 5′-aza-2′-deoxycytidine with or without trichostatin A induced up-regulation of TOLLIP expression. Further analysis of relative gene expression of matched prostate cancer tissues when compared to benign tissues from individual patients with prostate cancer showed increased and significant expression for CCL18 (2.6-fold; p < 0.001), a modest yet significant increase in IL5 expression (1.17-fold; p = 0.015), and a modest increase in CXCL5 expression (1.4-fold; p = 0.25). In conclusion, our studies demonstrate that sex steroid hormones can induce aberrant gene expression via differential methylation changes in prostate carcinogenesis.  相似文献   

16.
C.M. Brosseau  G. Pirianov  K.W. Colston 《Steroids》2010,75(13-14):1082-1088
It has been previously demonstrated that 1,25 dihydroxyvitamin D3 (1,25-D3) exerts inhibitory effects in breast cancer cells. The aim of this study was to determine whether mitogen-activated protein kinase (MAPK) pathways are associated with 1,25-D3-induced cell death in breast cancer. We used three breast cell lines which have different sensitivities to 1,25-D3 treatment. Non-malignant MCF-12A cells were more sensitive to 1,25-D3 treatment than malignant MCF-7 cells (growth inhibition IC50 75 nM vs. 100 nM, p < 0.001) while malignant MDA-MB-231 cells were resistant. Moreover, 1,25-D3-induced apoptosis was caspase-dependent in MCF-12A cells and caspase-independent in MCF-7 cells. Following MAPK activation analysis, we found a significant activation of JNK in MCF-12A cells and malignant MCF-7 cells in response to 1,25-D3 treatment. Furthermore, 1,25-D3 treatment stimulated p38 activity in MCF-12A cells and in MCF-7 cells. ERK1/2 activity was unaffected by 1,25-D3 treatment in all breast cells. Importantly, no increased MAPK activity was observed in MDA-MB-231 breast cancer cells which displayed resistance to 1,25-D3-induced apoptosis. Utilising specific pharmacological inhibitors of JNK and p38, it was demonstrated that MCF-12A and MCF-7 cells were protected from death induced by 1,25-D3. These results implicate JNK and p38 signalling in 1,25-D3-induced cancer breast cell death.  相似文献   

17.
HDAC inhibitors (HDACIs) are capable of suppressing the cell growth of tumour cells due to the induction of apoptosis and/or cell cycle arrest. This allows of considering HDACIs as promising agents for tumour therapy. The final outcome – apoptotic cell death or cell cycle arrest – depends on the type of tumour and cellular context. In this report, we addressed the issue by analysing effects produced in E1A + Ras-transformed MEF cells by HDAC inhibitors sodium butyrate (NaB), Trichostatin A (TSA) and some others. It has been shown that the HDACIs induced cell cycle arrest in E1A + Ras-transformed cells but not apoptosis. The antiapoptotic effect of HDACIs is likely to be a result of NF-κB-dependent signaling pathway activation. HDACI-induced activation of NF-κB takes place in spite of a deregulated PI3K/Akt pathway in E1A + Ras cells, suggesting an alternative mechanism for the activation of NF-κB based on acetylation. HDACI-dependent activation of NF-κB prevents the induction of apoptosis by cytostatic agent adriamycin and serum deprivation. Accordingly, suppression of NF-κB activity in HDACI-arrested cells by the chemical inhibitor CAPE or RelA-siRNA resulted in the induction of an apoptotic programme. Thus, our findings suggest that the activation of the NF-κB pathway in HDACI-treated E1A + Ras-transformed cells blocks apoptosis and may thereby play a role in triggering the programme of cell cycle arrest and cellular senescence.  相似文献   

18.
As an essential component of the diet, retinol supplementation is often considered harmless and its application is poorly controlled. However, recent works demonstrated that retinol may induce a wide array of deleterious effects, especially when doses used are elevated. Controlled clinical trials have demonstrated that retinol supplementation increased the incidence of lung cancer and mortality in smokers. Experimental works in cell cultures and animal models showed that retinol may induce free radical production, oxidative stress and extensive biomolecular damage. Here, we evaluated the effect of retinol on the regulation of the receptor for advanced glycation end-products (RAGE) in the human lung cancer cell line A549. RAGE is constitutively expressed in lungs and was observed to be down-regulated in lung cancer patients. A549 cells were treated with retinol doses reported as physiologic (2 μM) or therapeutic (5, 10 or 20 μM). Retinol at 10 and 20 μM increased free radical production, oxidative damage and antioxidant enzyme activity in A549 cells. These doses also downregulated RAGE expression. Antioxidant co-treatment with Trolox®, a hydrophilic analog of α-tocopherol, reversed the effects of retinol on oxidative parameters and RAGE downregulation. The effect of retinol on RAGE was mediated by p38 MAPK activation, as blockade of p38 with PD169316 (10 μM), SB203580 (10 μM) or siRNA to either p38α (MAPK14) or p38β (MAPK11) reversed the effect of retinol on RAGE. Trolox also inhibited p38 phosphorylation, indicating that retinol induced a redox-dependent activation of this MAPK. Besides, we observed that NF-kB acted as a downstream effector of p38 in RAGE downregulation by retinol, as NF-kB inhibition by SN50 (100 μg/mL) and siRNA to p65 blocked the effect of retinol on RAGE, and p38 inhibitors reversed NF-kB activation. Taken together, our results indicate a pro-oxidant effect of retinol on A549 cells, and suggest that modulation of RAGE expression by retinol is mediated by the redox-dependent activation of p38/NF-kB signaling pathway.  相似文献   

19.
Crohn’s disease (CD) and ulcerative colitis (UC), two forms of inflammatory bowel disease (IBD), are chronic, relapsing, and tissue destructive lesions that are accompanied by the uncontrolled activation of effector immune cells in the mucosa. Recent estimates indicate that there are 1.3 million annual cases of IBD in the United States, 50% of which consists of CD and 50% of UC. Chemokines and cytokines play a pivotal role in the regulation of mucosal inflammation by promoting leukocyte migration to sites of inflammation ultimately leading to tissue damage and destruction. In recent years, experimental studies in rodents have led to a better understanding of the role played by these inflammatory mediators in the development and progression of colitis. However, the clinical literature on IBD remains limited. Therefore, the aim of this study was to evaluate systemic concentrations of key chemokines and cytokines in forty-two IBD patients with a range of disease activity compared to levels found in ten healthy donors. We found a significant increase in an array of chemokines including macrophage migration factor (MIF), CCL25, CCL23, CXCL5, CXCL13, CXCL10, CXCL11, MCP1, and CCL21 in IBD patients as compared to normal healthy donors (P < 0.05). Further, we also report increases in the inflammatory cytokines IL-16, IFN-γ, IL-1β and TNF-α in IBD patients when compared to healthy donors (P < 0.05). These data clearly indicate an increase in circulating levels of specific chemokines and cytokines that are known to modulate systemic level through immune cells results in affecting local intestinal inflammation and tissue damage in IBD patients. Blockade of these inflammatory mediators should be explored as a mechanism to alleviate or even reverse symptoms of IBD.  相似文献   

20.
INTRODUCTION: While mutations in PIK3CA are most frequently (45%) detected in luminal breast cancer, downstream PI3K/AKT/mTOR pathway activation is predominantly observed in the basal subtype. The aim was to identify proteins activated in PIK3CA mutated luminal breast cancer and the clinical relevance of such a protein in breast cancer patients. MATERIALS AND METHODS: Expression levels of 171 signaling pathway (phospho-)proteins established by The Cancer Genome Atlas (TCGA) using reverse phase protein arrays (RPPA) were in silico examined in 361 breast cancers for their relation with PIK3CA status. MAPK1/3 phosphorylation was evaluated with immunohistochemistry on tissue microarrays (TMA) containing 721 primary breast cancer core biopsies to explore the relationship with metastasis-free survival. RESULTS: In silico analyses revealed increased phosphorylation of MAPK1/3, p38 and YAP, and decreased expression of p70S6K and 4E–BP1 in PIK3CA mutated compared to wild-type luminal breast cancer. Augmented MAPK1/3 phosphorylation was most significant, i.e. in luminal A for both PIK3CA exon 9 and 20 mutations and in luminal B for exon 9 mutations. In 290 adjuvant systemic therapy naïve lymph node negative (LNN) breast cancer patients with luminal cancer, high MAPK phosphorylation in nuclei (HR = 0.49; 95% CI, 0.25–0.95; P = .036) and in tumor cells (HR = 0.37; 95% CI, 0.18–0.79; P = .010) was related with favorable metastasis-free survival in multivariate analyses including traditional prognostic factors. CONCLUSION: Enhanced MAPK1/3 phosphorylation in luminal breast cancer is related to PIK3CA exon-specific mutations and correlated with favorable prognosis especially when located in the nuclei of tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号