首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveIL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues.MethodsControl and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells.ResultsOur results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues.ConclusionsAbsence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome.  相似文献   

2.
The inflammasome has been recently implicated in obesity-associated dys-metabolism. However, of its products, the specific role of IL-1β was clinically demonstrated to mediate only the pancreatic beta-cell demise, and in mice mainly the intra-hepatic manifestations of obesity. Yet, it remains largely unknown if IL-1β, a cytokine believed to mainly function locally, could regulate dysfunctional inter-organ crosstalk in obesity. Here we show that High-fat-fed (HFF) mice exhibited a preferential increase of IL-1β in portal compared to systemic blood. Moreover, portally-drained mesenteric fat transplantation from IL-1βKO donors resulted in lower pyruvate-glucose flux compared to mice receiving wild-type (WT) transplant. These results raised a putative endocrine function for visceral fat-derived IL-1β in regulating hepatic gluconeogenic flux. IL-1βKO mice on HFF exhibited only a minor or no increase in adipose expression of pro-inflammatory genes (including macrophage M1 markers), Mac2-positive crown-like structures and CD11b-F4/80-double-positive macrophages, all of which were markedly increased in WT-HFF mice. Further consistent with autocrine/paracrine functions of IL-1β within adipose tissue, adipose tissue macrophage lipid content was increased in WT-HFF mice, but significantly less in IL-1βKO mice. Ex-vivo, adipose explants co-cultured with primary hepatocytes from WT or IL-1-receptor (IL-1RI)-KO mice suggested only a minor direct effect of adipose-derived IL-1β on hepatocyte insulin resistance. Importantly, although IL-1βKOs gained weight similarly to WT-HFF, they had larger fat depots with similar degree of adipocyte hypertrophy. Furthermore, adipogenesis genes and markers (pparg, cepba, fabp4, glut4) that were decreased by HFF in WT, were paradoxically elevated in IL-1βKO-HFF mice. These local alterations in adipose tissue inflammation and expansion correlated with a lower liver size, less hepatic steatosis, and preserved insulin sensitivity. Collectively, we demonstrate that by promoting adipose inflammation and limiting fat tissue expandability, IL-1β supports ectopic fat accumulation in hepatocytes and adipose-tissue macrophages, contributing to impaired fat-liver crosstalk in nutritional obesity.  相似文献   

3.
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is a receptor for oxidized LDL, and is strongly expressed in endothelial cells at an early stage of atherosclerosis. LOX-1 expression in adipocytes is induced by PPARγ (ligands and appears to be involved in adipocyte cholesterol metabolism. However, the role of adipose tissue LOX-1 in high-fat diet-induced obesity is unknown. We found that mRNA levels of adipose tissue LOX-1 were markedly increased in obese mice fed a high-fat diet (HFD) compared with those fed normal chow. The levels were closely correlated with those of a proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Then, LOX-1 knockout (LOX-1-KO) and wild-type (WT) mice were fed HFD for 16 weeks. HFD feeding increased the body and mesenteric fat weights similarly in WT and LOX-1-KO mice. HFD-induced expressions of proinflammatory cytokines such as MCP-1, MIP-1α, and IL-6 were significantly less in LOX-1-KO than WT mice. Thus, LOX-1 is required for the HFD-induced expression of proinflammatory cytokines in the adipose tissue of obese mice.  相似文献   

4.
Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice.  相似文献   

5.
The present study was performed to examine a hypothesis that peroxisome proliferator-activated receptor gamma (PPARgamma) is implicated in high fat diet-induced liver steatosis. Mice were fed with control or high fat diet containing approximately 10% or 80% cholesterol, respectively. Macroscopic and microscopic findings demonstrated that lipid accumulation in the liver was observed as early as 2 weeks after high fat diet and that high fat diet for 12 weeks developed a fatty liver phenotype, establishing a novel model of diet-induced liver steatosis. Gene profiling with microarray and real-time PCR studies demonstrated that among genes involved in lipid metabolism, adipogenesis-related genes, PPARgamma and its targeted gene, CD36 mRNA expression was specifically up-regulated in the liver by high fat diet for 2 weeks. Immunohistochemical study revealed that PPARgamma protein expression is increased in the nuclei of hepatocytes by high fat diet. It was also shown that protein expression of cAMP response element-binding protein (CREB), an upstream molecule of PPARgamma, in the liver was drastically suppressed by high fat diet. All these results suggest for the first time that the CREB-PPARgamma signaling pathway may be involved in the high fat diet-induced liver steatosis.  相似文献   

6.
Obesity and insulin resistance are associated with chronic, low grade inflammation. Moreover, regulation of energy metabolism and immunity are highly integrated. We hypothesized that energy-sensitive coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase (AMPK) may modulate inflammatory gene expression in liver. Microarray analysis revealed that PGC-1α up-regulated expression of several cytokines and cytokine receptors, including interleukin 15 receptor α (IL15Rα) and, even more importantly, anti-inflammatory interleukin 1 receptor antagonist (IL1Rn). Overexpression of PGC-1α and induction of PGC-1α by fasting, physical exercise, glucagon, or cAMP was associated with increased IL1Rn mRNA and protein expression in hepatocytes. Knockdown of PGC-1α by siRNA down-regulated cAMP-induced expression of IL1Rn in mouse hepatocytes. Furthermore, knockdown of peroxisome proliferator-activated receptor α (PPARα) attenuated IL1Rn induction by PGC-1α. Overexpression of PGC-1α, at least partially through IL1Rn, suppressed interleukin 1β-induced expression of acute phase proteins, C-reactive protein, and haptoglobin. Fasting and exercise also induced IL15Rα expression, whereas glucagon and cAMP resulted in reduction in IL15Rα mRNA levels. Finally, AMPK activator metformin and adenoviral overexpression of AMPK up-regulated IL1Rn and down-regulated IL15Rα in primary hepatocytes. We conclude that PGC-1α and AMPK alter inflammatory gene expression in liver and thus integrate energy homeostasis and inflammation. Induction of IL1Rn by PGC-1α and AMPK may be involved in the beneficial effects of exercise and caloric restriction and putative anti-inflammatory effects of metformin.  相似文献   

7.
TRPM2 Ca(2+)-permeable cation channel is widely expressed and activated by markers of cellular stress. Since inflammation and stress play a major role in insulin resistance, we examined the role of TRPM2 Ca(2+) channel in glucose metabolism. A 2-h hyperinsulinemic euglycemic clamp was performed in TRPM2-deficient (KO) and wild-type mice to assess insulin sensitivity. To examine the effects of diet-induced obesity, mice were fed a high-fat diet for 4-10 mo, and metabolic cage and clamp studies were conducted in conscious mice. TRPM2-KO mice were more insulin sensitive partly because of increased glucose metabolism in peripheral organs. After 4 mo of high-fat feeding, TRPM2-KO mice were resistant to diet-induced obesity, and this was associated with increased energy expenditure and elevated expressions of PGC-1α, PGC-1β, PPARα, ERRα, TFAM, and MCAD in white adipose tissue. Hyperinsulinemic euglycemic clamps showed that TRPM2-KO mice were more insulin sensitive, with increased Akt and GSK-3β phosphorylation in heart. Obesity-mediated inflammation in adipose tissue and liver was attenuated in TRPM2-KO mice. Overall, TRPM2 deletion protected mice from developing diet-induced obesity and insulin resistance. Our findings identify a novel role of TRPM2 Ca(2+) channel in the regulation of energy expenditure, inflammation, and insulin resistance.  相似文献   

8.
9.
Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa−/− mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance.  相似文献   

10.
Mesenteric adipose tissue (MAT) inflammation is associated with non‐alcoholic fatty liver disease (NAFLD), and immune cells play pivotal roles in the inflammation of adipose tissue. Here, we investigated the roles of MAT B lymphocytes in NAFLD. Mice fed with high‐fat diet (HFD) and normal diet (ND) were killed in time gradients (4, 8 and 12 weeks). Compared with ND‐fed mice, intra‐hepatic CD45+CD19+ B lymphocytes increased after 4 weeks (P < 0.01) of HFD feeding, and lasted until the 12th week, infiltrated earlier than CD45+CD3+ T lymphocytes and CD45+F4/80+ macrophages. The mRNA expression of tumour necrosis factor (TNF)‐α, interleukin (IL)‐6 and monocyte chemotactic protein (MCP)‐1 decreased in MAT of Bnull HFD‐fed mice compared to that in wild‐type HFD‐fed mice, along with lesser macrophages. Mesenteric adipose tissue B cells from HFD‐fed mice promoted macrophage differentiation to type‐Ι macrophages and expression of pro‐inflammatory cytokines in vitro. Macrophages pre‐treated with MAT B cells from HFD‐fed mice showed elevated mRNA expression of IL‐6 and TNF‐α and declined IL‐10 levels in adipocytes compared to ND MAT B cell pre‐treated macrophages. Besides, internal near‐infrared scanning and external transwell assay showed that HFD MAT B cells migrated to the liver more than ND MAT B cells. High‐fat diet MAT B cells induced higher MCP‐1 and lower IL‐10 expression in primary hepatocytes compared to ND MAT B cells in co‐culture experiment. These data indicate that B lymphocytes infiltrate early in MAT during the development of NAFLD, which may not only promote MAT inflammation by regulating macrophages but also migrate to the liver and induce hepatocytes inflammation.  相似文献   

11.
Caffeine intake is associated with a reduced risk developing non-alcoholic fatty liver disease (NAFLD), but the underlying molecular mechanisms remain to be fully elucidated. We report here that caffeine markedly improved high fat diet-induced NAFLD in mice resulting in a 10-fold increase in circulating IL-6 levels, leading to STAT3 activation in the liver. Interestingly, the expression of IL-6 mRNA was not increased in the liver, but increased substantially in the muscles of caffeine-treated mice. Caffeine was found to stimulate IL-6 production in cultured myotubes but not in hepatocytes, adipocytes, or macrophages. The inhibition of p38/MAPK abrogated caffeine-induced IL-6 production in muscle cells. Caffeine failed to improve NAFLD in IL-6 and hepatocyte-specific STAT3 knockout mice, indicating that the IL-6/STAT3 pathway is vital for the hepatoprotective effects of caffeine in NAFLD. The possibility that IL-6/STAT3-mediated hepatic autophagosome induction and hepatocytic oxygen consumption are involved in the anti-NAFLD effects of caffeine cannot be excluded, based on the findings presented here. Our results reveal that caffeine ameliorates NAFLD via crosstalk between muscle IL-6 production and liver STAT3 activation.  相似文献   

12.
Recently, emerging evidence strongly suggested that the activation of interleukin‐27 Receptor α (IL‐27Rα) could modulate different inflammatory diseases. However, whether IL‐27Rα affects allotransplantation rejection is not fully understood. Here, we investigated the role of IL‐27Rα on allorejection both in vivo and in vitro. The skin allotransplantation mice models were established, and the dynamic IL‐27Rα/IL‐27 expression was detected, and IL‐27Rα+ spleen cells adoptive transfer was performed. STAT1/3/5 phosphorylation, proliferation and apoptosis were investigated in mixed lymphocyte reaction (MLR) with recombinant IL‐27 (rIL‐27) stimulation. Finally, IFN‐γ/ IL‐10 in graft/serum from model mice was detected. Results showed higher IL‐27Rα/IL‐27 expression in allografted group compared that syngrafted group on day 10 (top point of allorejection). IL‐27Rα+ spleen cells accelerated allograft rejection in vivo. rIL‐27 significantly promoted proliferation, inhibited apoptosis and increased STAT1/3/5 phosphorylation of alloreactive splenocytes, and these effects of rIL‐27 could be almost totally blocked by JAK/ STAT inhibitor and anti‐IL‐27 p28 Ab. Finally, higher IL‐27Rα+IFN‐γ+ cells and lower IL‐27Rα+IL‐10+ cells within allografts, and high IFN‐γ/low IL‐10 in serum of allorejecting mice were detected. In conclusion, these data suggested that IL‐27Rα+ cells apparently promoted allograft rejection through enhancing alloreactive proliferation, inhibiting apoptosis and up‐regulating IFN‐γ via enhancing STAT pathway. Blocking IL‐27 pathway may favour to prevent allorejection, and IL‐27Rα may be as a high selective molecule for targeting diagnosis and therapy for allotransplantation rejection.  相似文献   

13.
Mixed background SHP(-/-) mice are resistant to diet-induced obesity due to increased energy expenditure caused by enhanced PGC-1α expression in brown adipocytes. However, congenic SHP(-/-) mice on the C57BL/6 background showed normal expression of PGC-1α and other genes involved in brown adipose tissue thermogenesis. Thus, we reinvestigated the impact of small heterodimer partner (SHP) deletion on diet-induced obesity and insulin resistance using congenic SHP(-/-) mice. Compared with their C57BL/6 wild-type counterparts, SHP(-/-) mice subjected to a 6 month challenge with a Western diet (WestD) were leaner but more glucose intolerant, showed hepatic insulin resistance despite decreased triglyceride accumulation and increased β-oxidation, exhibited alterations in peripheral tissue uptake of dietary lipids, maintained a higher respiratory quotient, which did not decrease even after WestD feeding, and displayed islet dysfunction. Hepatic mRNA expression analysis revealed that many genes expressed higher in SHP(-/-) mice fed WestD were direct peroxisome proliferator-activated receptor alpha (PPARα) targets. Indeed, transient transfection and chromatin immunoprecipitation verified that SHP strongly repressed PPARα-mediated transactivation. SHP is a pivotal metabolic sensor controlling lipid homeostasis in response to an energy-laden diet through regulating PPARα-mediated transactivation. The resultant hepatic fatty acid oxidation enhancement and dietary fat redistribution protect the mice from diet-induced obesity and hepatic steatosis but accelerate development of type 2 diabetes.  相似文献   

14.
Lee J  Hong SW  Chae SW  Kim DH  Choi JH  Bae JC  Park SE  Rhee EJ  Park CY  Oh KW  Park SW  Kim SW  Lee WY 《PloS one》2012,7(2):e31394
The effects of exendin-4 on Sirt1 expression as a mechanism of reducing fatty liver have not been previously reported. Therefore, we investigated whether the beneficial effects of exendin-4 treatment on fatty liver are mediated via Sirt1 in high-fat (HF) diet-induced obese C57BL/6J mice and related cell culture models. Exendin-4 treatment decreased body weight, serum free fatty acid (FA), and triglyceride levels in HF-induced obese C57BL/6J mice. Histological analysis showed that exendin-4 reversed HF-induced hepatic accumulation of lipids and inflammation. Exendin-4 treatment increased mRNA and protein expression of Sirt1 and its downstream factor, AMPK, in vivo and also induced genes associated with FA oxidation and glucose metabolism. In addition, a significant increase in the hepatic expression of Lkb1 and Nampt mRNA was observed in exendin-4-treated groups. We also observed increased expression of phospho-Foxo1 and GLUT2, which are involved in hepatic glucose metabolism. In HepG2 and Huh7 cells, mRNA and protein expressions of GLP-1R were increased by exendin-4 treatment in a dose-dependent manner. Exendin-4 enhanced protein expression of Sirt1 and phospho-AMPKα in HepG2 cells treated with 0.4 mM palmitic acid. We also found that Sirt1 was an upstream regulator of AMPK in hepatocytes. A novel finding of this study was the observation that expression of GLP-1R is proportional to exendin-4 concentration and exendin-4 could attenuate fatty liver through activation of Sirt1.  相似文献   

15.
The exact implication of innate immunity in granuloma formation and irreversible lung fibrosis remains to be determined. In this study, we examined the lung inflammatory and fibrotic responses to silica in MyD88-knockout (KO) mice. In comparison to wild-type (WT) mice, we found that MyD88-KO animals developed attenuated lung inflammation, neutrophil accumulation and IL-1β release in response to silica. Granuloma formation was also less pronounced in MyD88-KO mice after silica. This limited inflammatory response was not accompanied by a concomitant attenuation of lung collagen accumulation after silica. Histological analyses revealed that while pulmonary fibrosis was localized in granulomas in WT animals, it was diffusely distributed throughout the parenchyma in MyD88-KO mice. Robust collagen accumulation was also observed in mice KO for several other components of innate immunity (IL-1R, IL-1, ASC, NALP3, IL-18R, IL-33R, TRIF, and TLR2-3-4,). We additionally show that pulmonary fibrosis in MyD88-KO mice was associated with the accumulation of pro-fibrotic regulatory T lymphocytes (T regs) and pro-fibrotic cytokine expression (TGF-β, IL-10 and PDGF-B), not with T helper (Th) 17 cell influx. Our findings indicate that the activation of MyD88-related innate immunity is central in the establishment of particle-induced lung inflammatory and granuloma responses. The development of lung fibrosis appears uncoupled from inflammation and may be orchestrated by a T reg-associated pathway.  相似文献   

16.
Experiments in IL-15?/? and IL-15Rα?/? mice show that intra-renal IL-15, through IL-15Rα behaves as an epithelial survival factor. Recent data highlight new functions of IL-15 in renal homeostasis mediated by IL-15Rγ (CD132). Indeed, in CD132+ renal epithelial tubular cells IL-15 preserves E-cadherin expression inhibiting epithelial-mesenchymal transition (EMT). By contrast, during allograft rejection, the increased intra-graft IL-15 expression favors tubular destruction facilitating the intraepithelial recruitment of CD8 T cells expressing the E-cadherin ligand CD103. In renal cancer, loss of CD132 by epithelial cells defines a tumoral microenvironment where IL-15 triggers E-cadherin down-regulation and EMT. Finally, in CD132+ renal cancer stem cells IL-15 induces the generation of non-tumorigenic epithelial cells sensitive to cytotoxic drugs. These findings are discussed in the light of IL-15-based immunotherapy for renal cancer.  相似文献   

17.
18.
Obesity is associated with systemic low-grade inflammation and is a risk factor for non-alcoholic fatty pancreas disease (NAFPD), but the molecular mechanisms of these associations are not clear. Interleukin (IL)-10, a potent anti-inflammatory cytokine, is released during acute pancreatitis and is known to limit inflammatory responses by downregulating the release of proinflammatory mediators. The origin of IL-10 that suppresses pancreatitis has not been investigated. Since obesity is known to reduce expression of proinflammatory cytokines in the spleen, we examined whether spleen-derived IL-10 regulates NAFPD caused by high-fat (HF) diet-induced obesity. The following investigations were performed: 1) IL-10 induction from spleen was examined in male mice fed a HF diet; 2) triglyceride content, expression of pro- and anti-inflammatory cytokines and infiltration of M1 and M2 macrophages were determined to evaluate ectopic fat accumulation and inflammatory responses in the pancreas of splenectomy (SPX)-treated mice fed HF diet; 3) exogenous IL-10 was systemically administered to SPX-treated obese mice and the resulting pathogenesis caused by SPX was assessed; and 4) IL-10 knockout (IL-10KO) mice were treated with SPX and ectopic fat deposition and inflammatory conditions in the pancreas were investigated. Obesity impaired the ability of the spleen to synthesize cytokines, including IL-10. SPX aggravated fat accumulation and inflammatory responses in the pancreas of HF diet-induced obese mice and these effects were inhibited by systemic administration of IL-10. Moreover, SPX had little effect on fat deposition and inflammatory responses in the pancreas of IL-10KO mice. Our findings indicate that obesity reduces IL-10 production by the spleen and that spleen-derived IL-10 may protect against the development of NAFPD.  相似文献   

19.
The phosphoinositide phosphatase, myotubularin-related protein 14 (MTMR14), has been reported to play an important role in the regulation of muscle performance, autophagy, and aging in mice. We previously showed that MTMR14-knockout (KO) mice gain weight earlier than their wild-type (WT) littermates even on a normal chow diet (NCD), suggesting that this gene might also be involved in regulating metabolism. In the present study, we evaluated the effect of MTMR14 deficiency on high-fat diet (HFD)-induced obesity, lipid accumulation, metabolic disorders, and inflammation in WT and MTMR14-KO mice fed with NCD or HFD. To this end, MTMR14-KO mice fed with HFD showed significantly increased body weight, blood glucose levels, serum triglyceride (TG) levels, and total cholesterol (TC) levels as compared to their age-matched WT control. Additionally, lipid accumulation also increased in the KO mice. Simultaneously, the expression of metabolism-associated genes (Glut4, adiponectin, and leptin) was different in the liver, muscle, and fatty tissue of MTMR14-KO mice fed with HFD. More importantly, the expression of several inflammation-associated genes (TNF-α, IL-6, IL-1β, and MCP-1) dramatically increased in the liver, muscle, and fatty tissue of MTMR14-KO mice relative to control. Taken together, these results suggest that MTMR14 deficiency accelerates HFD-induced metabolic dysfunction and inflammation. Furthermore, the results showed that exacerbated metabolic dysfunction and inflammation may be regulated via the PI3K/Akt and ERK signaling pathways.  相似文献   

20.
IL-15 has potential as an immunotherapeutic agent for cancer treatment because it is a critical factor for the proliferation and activation of NK and CD8(+) T cells. However, monotherapy of patients with malignancy with IL-15 that has been initiated may not be optimal, because of the limited expression of the private receptor, IL-15Rα. We demonstrated greater CD8 T cell-mediated therapeutic efficacy using a combination regimen of murine IL-15 administered with an agonistic anti-CD40 Ab (FGK4.5) that led to increased IL-15Rα expression on dendritic cells (DCs), as well as other cell types, in a syngeneic established TRAMP-C2 tumor model. Seventy to one hundred percent of TRAMP-C2 tumor-bearing wild-type C57BL/6 mice in the combination group manifested sustained remissions, whereas only 0-30% in the anti-CD40-alone group and none in the murine IL-15-alone group became tumor free (p < 0.001). However, the combination regimen showed less efficacy in TRAMP-C2 tumor-bearing IL-15Rα(-/-) mice than in wild-type mice. The combination regimen significantly increased the numbers of TRAMP-C2 tumor-specific SPAS-1/SNC9-H(8) tetramer(+)CD8(+) T cells, which were associated with the protection from tumor development on rechallenge with TRAMP-C2 tumor cells. Using an in vitro cytolytic assay that involved NK cells primed by wild-type or IL-15Rα(-/-) bone marrow-derived DCs, we demonstrated that the expression of IL-15Rα by DCs appeared to be required for optimal IL-15-induced NK priming and killing. These findings support the view that anti-CD40-mediated augmented IL-15Rα expression was critical in IL-15-associated sustained remissions observed in TRAMP-C2 tumor-bearing mice receiving combination therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号