首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A metabolite screening of cyanobacteria was performed by nuclear magnetic resonance (NMR) analysis of the soluble material obtained through sequential extraction of the biomass with three different extractive ability solvents (hexane, ethyl acetate, and methanol). Twenty-five strains from the Coimbra Collection of Algae (ACOI) belonging to different orders in the botanical code that represent three subsections of the Stainer-Rippka classification were used. The 1H NMR spectra of hexane extracts showed that only two strains of Nostoc genus accumulated triacylglycerols. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols were the major components of the ethyl acetate extracts in a mono- to digalactosyldiacylglycerols ratio of 4.5 estimated by integration of the signals at δ 3.99 and 3.94 ppm (sn3 glycerol methylene). Oligosaccharides of sucrose and mycosporine-like amino acids, among other polar metabolites, were detected in the methanolic extracts. Strains of Nostocales order contained heterocyst glycolipids, whereas sulphoquinovosyldiacylglycerols were absent in one of the studied strains (Microchaete tenera ACOI 1451). Phosphathidylglycerol was identified as the major phospholipid in the methanolic extracts together with minor amounts of phosphatidylcholine based on 1H, 31P 2D correlation experiments. Chemotaxonomic information could be easily obtained through the analysis of the δ 3.0–0.5 ppm (fatty acid distribution) and δ 1.2–1.1 ppm (terminal methyl groups of the aglycons in heterocyst glycolipids) regions of the 1H NMR spectra of the ethyl acetate and methanol extracts, respectively.  相似文献   

2.
This study was part of a broad search for endogenous regulators of L-type calcium channels. The screening for active fractions was done by measuring inhibition [3H]1,4-dihydropyridine (DHP) binding to rat cardiac and cortex membranes. An inhibitory fraction, termed lyophilized brain hexane-extractable inhibitor (LBHI), was isolated from hexane extracts of lyophilized calf brain. The active substance was purified by a series of chromatographic steps. 13C nuclear magnetic resonance (NMR), 1H coherence spectroscopy (COSY) NMR and fast atom bombardment (FAB) mass spectroscopy suggested that LBHI was N-arachidonic acid-2-hydroxyethylamide. Synthesis of this substance and subsequent high performance liquid chromatography (HPLC) and NMR analysis confirmed this structure. Synthetic LBHI (SLBHI) inhibited [3H]DHP binding to rat cortex membranes with an IC50 value of 15 μM and a Hill coefficient of 2. Saturation analysis in the presence of SLBHI showed a change in KD (equilibrium dissociation constant), but not maximal binding capacity (Bmax). SLBHI produced an increased dissociation rate, which, along with the Hill slope of > 1, suggested a non-competitive interacton with the DHP binding site. The results suggest that arachidonic acid derivatives may be endogenous modifiers of the DHP calcium antagonist binding site.  相似文献   

3.
The diatoms Ditylum brightwellii and Nitzschia turgidula were grown in semi-continuous culture under various combinations of light intensity, temperature and daylength (photoperiod). Growth was strongly limited by light intensities below 0.03 cal/em2. min in both species. Above this intensity, light saturation of growth was rapidly approached in Nitzschia but only gradually so in Ditylum. The growth rate in continuous light was never significantly higher than with 16 hours of light plus 8 hours of dark. In Ditylum, continuous light above 0.03 cal/cm2. min caused a strong inhibition of growth at all temperatures. The chlorophyll concentration in the cells was greater the shorter the photopceriod. In cultures synchronised by different combinations of light intensity and photoperiod, cell division generally took place in the light. Synchrony was best under short photoperiods of bright light. Time courses are shown for chlorophyll synthesis and photosynthesis in synchronised cultures.  相似文献   

4.
Hexane, chloroform, ethyl acetate and methanol extracts of Hydnocarpus pentandra (Flacourtiaceae) seeds were tested for antifeedant, larvicidal, pupal mortality and adult deformations activities against Helicoverpa armigera. Crude extracts were screened at 0.5, 1.0, 1.5 and 2.0% concentrations. Bioassay-guided fractionation method was followed to isolate the active fraction from the crude extract. Active fraction was analysed by FT-IR, 1H NMR, 13C NMR and GC-MS. Hexane extract presented the highest antifeedant (87.89%), pupal mortality (41.67%) and adult malformation activities at 2% concentration. Seven different fractions were isolated from hexane extract, among which fraction-2 showed the highest antifeedant (81.43%) activity and recorded the lowest LC50 of 792.07 ppm. The fraction-2 contained two cyclopentenyl carboxylic acids, such as hydnocarpic acid (1) and chaulmoogric acid (2) in the ratio of 2:1. These compounds were major constituents in the active fraction of hexane extract of H. pentandra seeds. Fraction-2 can be used for agricultural pest management.  相似文献   

5.
6.
Summary The response of the fungi investigated to duration of exposure to light varies with the variation in the light intensity employed. Using relatively low intensity light (160 and/or 300 foot candles/inch2), the growth ofMyrothecium verrucaria &Pestalotia gracilis was not affected by the increase in the time of light exposure, while that ofPleurotus ostreatus was checked. Fruiting under the same conditions was hastened on exposure to light. Under higher light intensity (950 foot candles/inch2), growth ofMyrothecium was not affected, while that ofPestalotia andPleurotus decreased as the daily period of exposure to light increased. Pleurotus cultures exposed continuously to light showed practically no growth, and combined addition of malt and yeast extracts had a noticeable growth promoting effect on cultures exposed continuously to light, but not significantly on those kept in the dark. This was explained by assuming the presence in malt and yeast extracts of light sensitive growth promoting substances. The effect of light on growth ofPleurotus was found to be concerned with both cell mechanism and medium: light probably inhibits inside the cell the synthesis of one or more substances essential for growth and at the same time it favors the breakdown in the medium of one or more substances required for growth.  相似文献   

7.
Astaxanthin production is commonly induced under stress conditions such as nutrient deficiency (N or P), high light stress, and variations of temperature, high NaCl concentrations, and other factors. The objective of the present study is the analysis of the effect of oxidative stress by sodium orthovanadate (SOV), a nonspecific inhibitor of protein tyrosine phosphatases, on the cells growth and astaxanthin production of H. lacustris. In the presence of SOV (lower than 5.0 mM), maximum growth of H. lacustris obtained was 2.4 × 105 cells/mL in MBBM medium at 24°C under continuous illumination (40 μE/m2/s) of white fluorescent light, with continuous aeration of CO2 (0.2 vvm). Total carotenoids accumulated per cell biomass unit treated with 2.5 mM SOV has approximately shown 2.5 folds higher than the control after short period of SOV induction time as 2 days, despite that cells were grown under normal light. Meanwhile, maximal astaxanthin production from H. lacustris was 10.7 mg/g biomass in MBBM with 5 days of continuous illumination at 40 μE/m2/s, which has been established as optimal light intensity for the control culture of H. lacustris. Treating algae H. lacustris with sodium orthovanadate showed promoting the accumulation of astaxanthin by advancing either the inhibition of dephosphorylation or synthesis of ATP. Its potential role of PTPases in microalgae H. lacustris is discussed. The first two authors are equally contributed to this work.  相似文献   

8.
The aim of this study was to determine the optimal physical process conditions for the cultivation of locally isolated strains of Nannochloropsis sp. and Tetraselmis striata to achieve maximum growth rate. It was essential to evaluate biomass production at different agitation rates, light intensities, and temperature levels. Central composite design and response surface methodology were applied to design the experiments and optimize the cultivation process for Nannochloropsis sp. and T. striata. The specific growth rate of 0.250 d?1 was obtained for Nannochloropsis sp. cells under the light intensity of 54 μmol photons · m?2 · s?1, at the agitation rate of 151 rpm in 24.5°C. The optimal physical process conditions for T. striata were obtained under the light intensity of 56 μmol photons · m?2 · s?1 in 25.5°C at the agitation rate of 151 rpm in 25.5°C, resulting in a specific growth rate of 0.226 d?1. The predicted values were justified by the verification tests. Good agreement between the predicted values and the experimental values confirmed the validity of the models for the cultivation of microalgal strains. In this article, the noteworthy result was that temperature was a dominant factor in obtaining high chl‐a content for Nannochloropsis sp., whereas the growth of T. striata strongly depended on light exposure.  相似文献   

9.
Our goal was to establish the hydrophilic metabolome of heterotrophic Arabidopsis thaliana cells grown in suspension, a cellular model of plant sink tissues. Water‐soluble metabolites were extracted using four protocols: perchloric acid, boiling ethanol, methanol and methanol/chloroform (M/Chl). They were detected and quantified using 1H nuclear magnetic resonance (NMR) spectroscopy at 400 MHz. Extraction yields and reproducibility of the extraction methods were investigated. The effects of cell harvest protocol, cell grinding and lyophilization and storage conditions on the measured metabolic profiles were also studied. These quantitative studies demonstrated for the first time that the four extraction protocols commonly used do lead to quite similar molecular compositions as analyzed by 1H NMR. The M/Chl method proved effective and reliable to prepare series of physiologically significant extracts from plant cells for 1H NMR analysis. Reproducibility of the detected metabolome was assessed over long periods of time by analyzing a large number of separate extracts prepared from independent cultures. Larger variations in the NMR metabolite profiles could be correlated to changes in physiological parameters of the culture medium. Quantitative resolved 1H NMR of cell extracts proved to be robust and reliable for routine metabolite profiling of plant cell cultures.  相似文献   

10.
Two prominent diatoms encountered in oyster-ponds,Haslea ostrearia and Skeletonema costatum,were grown in batch and in a semi-continuous modeunder light of different spectral quality, white, blueor blue-green. The last corresponded to white lightmodified by a water-soluble pigment, marennine,produced by H. ostrearia. After acclimation tothe different light treatments, the growth rates ofboth species showed little variation with respect tolight quality. The parameters for photosynthesisvs irradiance curves were very similar in H. ostrearia grown under the three light conditions,whereas S. costatum the maximum photosyntheticcapacity (on a chlorophyll a basis) wassignificantly reduced under blue-green light. Fluorescence analyses confirmed the data forphotosynthesis, with the operational fluorescenceyield decreasing faster with increasing irradiance inS. costatum grown under blue-green light. InH. ostrearia, fluorescence yields undersaturating irradiance were closely similar in thethree light conditions. The results are discussed inrelation with the prominent development of H.ostrearia that can outcompete other diatoms inoyster-ponds.  相似文献   

11.
The metabolic pathways of poly(3-hydroxybutyrate) (PHB) and polyphosphate in the microorganism Alcaligenes eutrophus H16 were studied by 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectroscopy and by conventional analytical techniques. A. eutrophus cells accumulated two storage polymers of PHB and polyphosphate in the presence of carbon and phosphate sources under aerobic conditions after exhaustion of nitrogen sources. The solid-state cross-polarization/magic-angle spinning 13C NMR spectroscopy was used to study the biosynthetic pathways of PHB and other cellular biomass components from 13C-labeled acetate. The solid-state 13C NMR analysis of lyophilized intact cells grown on [1-13C]acetate indicated that the carbonyl carbon of acetate was selectively incorporated both into the carbonyl and methine carbons of PHB and into the carbonyl carbons of proteins. The 31P NMR analysis of A. eutrophus cells in suspension showed that the synthesis of intracellular polyphosphate was closely related to the synthesis of PHB. The roles of PHB and polyphosphate in the cells were studied under conditions of carbon, phosphorus, and nitrogen source starvation. Under both aerobic and anaerobic conditions PHB was degraded, whereas little polyphosphate was degraded. The rate of PHB degradation under anaerobic conditions was faster than that under aerobic conditions. Under anaerobic conditions, acetate and 3-hydroxybutyrate were produced as the major extracellular metabolites. The implications of this observation are discussed in connection with the regulation of PHB and polyphosphate metabolism in A. eutrophus.  相似文献   

12.
Optimising sporulation and virulence in Drechslera avenacea   总被引:1,自引:0,他引:1  
Studies were conducted on agar media to optimise sporulation of Drechslera avenacea, a fungal pathogen being evaluated as a biological control agent for Avena species (wild oats). Conidium production was affected by nutrition, pH, temperature and light conditions. Of the agar media tested, Czapek Dox agar (CZA) and half-strength oatmeal agar (½OMA) were the only media where sporulation occurred at all temperatures tested under a 12-h light:12-h dark photoperiod (L/D). The optimum temperature for conidium production was 20°C on ½OMA, whereas there was no optimum temperature on CZA. Under a 12-h near-ultraviolet (NUV):12-h dark photoperiod (NUV/D), similar numbers of conidia were produced on CZA at 6.66, 14.56, and 22.78 W m?2, whereas on ½OMA conidium production was the highest at 14.56 W m?2. When NUV/D and L/D conditions were compared, similar numbers of conidia where produced on CZA, whereas ½OMA conidium production was superior under the NUV/D photoperiod. Considerable variation in sporulation and degree of virulence of D. avenacea was detected among isolates from different geographic areas. The most virulent conidia were obtained on ½OMA at 20°C incubated under continuous illumination NUV light. Therefore, the most suitable conditions for conidium production of D. avenacea were growth for 1 week on ½OMA at 20°C under continuous NUV at an intensity of 14.56 W m?2. Under these conditions, 1.1×105 conidia mL?1 were produced which is the highest sporulation yet reported for any Drechslera spp., which are traditionally poor sporulators.  相似文献   

13.
The effects of light intensity and temperature on the growth of Salvinia molesta Mitchell were studied under shade and full sunlight conditions. Growth, in terms of increase in fresh weight and number of offshoots produced was significantly different (P<0.001) under the two light conditions; it was highest under shade during May–July, and in August–September under full sunlight. Mean relative growth rate (RGR) varied from 0.01 to 0.07 g g?1 day?1. Increase in the fresh weight had a significant positive nonlinear relationship with light intensity and atmospheric temperature. However, since there was a significant positive relationship between temperature and light intensity, it was not possible to separate their effects through regression analysis.  相似文献   

14.
Anabaena sp., isolated from a rice paddy, was investigated for its nitrogen fixation as measured by acetylene reduction activity (ARA) in P-limited continuous and light-limited semi-continuous cultures. Growth rate (μ) under P limitation was a function of cell P content (q p). Both the photosynthetic capacity (Pmax) and photosynthetic efficiency (α) increased with μ when expressed per cell, but not per unit chla. The ARA of steady-state cells under P limitation increased with μ and was linearly related to C-fixation rate. This was apparently a consequence of the control of C-fixation by P limitation. In light-limited cells, steady state ARA, both at the culture light intensity and in the dark, increased asymptotically with μ, but the activity in the dark was only about 51% of that in the light. When the light level of steady-state cells grown at a high in intensity was switched to a low level, ARA decreased exponentially with time. Dark ARA activity also showed a similar decline, but at much lower levels. Thus, ARA depended not only on light history, but also immediate photosynthesis. Steady-state ARA at the ambient intensity or in the dark showed a strong correlation with14C-fixation rate. ARA of light-limited cells showed the same light-saturation characteristics as their14C-fixation, with the same initial saturation intensity,I k. The ratios of Pmax to the maximum ARA (ARAmax), and α to the slope of ARA (αara) were identical. A comparison of gross to net photosynthesis and N2 fixation suggested that there was little leakage or excretion of fixed C or N.  相似文献   

15.
Evaluation of phytochemical constituents and antioxidant and antimicrobial activities of hexane (PELH), dichloromethane (PELDCM), ethyl acetate (PELEA), and MeOH (PELM) extracts of young leaves of Pseudocalymma elegans have been carried out. Moreover, extracts have also been explored for the presence of sulphur containing compounds, 1,2‐dithiolane ( 33 ), diallyl disulfide ( 35 ), 3‐vinyl‐1,2‐dithiacyclohex‐5‐ene ( 37 ), and diallyl trisulfide ( 38 ) responsible for the garlic like smell of P. elegans. All the extracts were found to be antioxidant and showed potent inhibition with IC50 values of 0.168 ± 0.001, 0.128 ± 0.002, 0.221 ± 0.011, and 0.054 ± 0.001, respectively, as compared to standard drugs ascorbic acid (AA) and butylated hydroxytoluene (BHT). The ethyl acetate extract (PELE) showed excellent activities against few Gram‐positive and Gram‐negative bacteria and some fungi as compared with standard drug ceftriaxone (3rd generation cephalosporin) and nystatin, respectively. Chemical constituents of hexane, dichloromethane, and ethyl acetate extracts were identified by gas chromatography‐mass spectrometry and mass spectral library search. Over all 55 chemical constituents were first time identified from the leaves which included branched and n‐hydrocarbons, fatty acids, fatty acid methyl esters, fatty alcohols, terpenes, alkaloid, vitamins, glycosides, aromatic compounds, and sulfur containing compounds. Two known chemical constituents, ursolic acid ( 1 ) and β‐amyrin ( 2 ), were also purified for the first time from the MeOH extract. To elucidate the structures of these compounds, UV, IR, EI‐MS, 1H‐ and 13C‐NMR spectroscopy were used.  相似文献   

16.
Uptake of 14C-labelled L-lysine. L-arginine, L-glutamic acid, L-aspartic acid, and glycine was studied in 0.75 mm wide barley (Hordeum vulgare L. cv. Lise) leaf slices. After an initial period (10 min) of rapid accumulation amino acid uptake proceeded at a steady, lower rate for several hours. Uptake was stimulated by 10?4M Ca?2+ ions. Uptake was strongly pH dependent with the following optima: aspartic acid pH 3.5. glutamic acid pH 4.1. glycine pH 5.8, lysine pH 6–7, and arginine pH 5–8 (a broad plateau). The optimal temperature was about 30°C. and the temperature coefficient in the range 0–20gGC was 2.3–2.5. Concentration-dependence data gave uptake isotherms which appeared to be multiphasic for all the amino acids used. The amino acids inhibited each other in a competitive fashion, indicating that they were all transported by a single carrier system. Uptake of lysinc was strongly inhibited by 10?4M 2.4-dinitrophenol. Lysine uptake was not stimulated by light under aerobic conditions. However, it was much reduced in the dark under anaerobic conditions. This reduction was almost compensated for by light. The light-stimulation of uptake under anaerobic conditions was abolished by 10?5M 3-(3,4-dichlorophenyl) 1.1-dimethylurea.  相似文献   

17.
Docosahexaenoic acid (DHA, 22:6n-3), the most prevalent fatty acid in phospholipids of rod outer segments (ROS), is essential for visual transduction and daily renewal of ROS membranes. We investigated the association of [3H]DHA-lipids to rhodopsin in ROS from frogs (Rana pipiens) after in vitro (4 hrs) and in vivo (1 day and 32 days) labeling. Lipids from lyophilized ROS were sequentially extracted with hexane (neutral lipids), chloroform:methanol (phospholipids) and acidified chloroform:methanol (acidic phospholipids). After in vitro labeling, free [3H]DHA was easily extracted with hexane (66% of total ROS free DHA), implying a weak association with proteins (rhodopsin). In contrast, after in vivo labeling free [3H]DHA was mainly recovered in the acidic solvent extract (89–99%). Of all phospholipids, [3H-DHA]phosphatidic acid (PA) displayed the highest binding to rhodopsin after both in vitro (43% in acidic extract) and in vivo (>70%) labeling suggesting a possible modulatory role of free DHA and DHA-PA in visual transduction.  相似文献   

18.
The use of untreated sea water supplemented with anaerobic effluents from digested pig waste and sodium bicarbonate was evaluated as a low-cost medium for semi-continuous cultivation of a mixed culture of two Spirulina strains in outdoor raceways under temperate climatic conditions (pond temperature in the range 21–26 °C and light intensity in the range 225–957␣μE m−2 s−1). The mixed culture had a predominant population (86.6 ± 3.9%) of an atypical Spirulina strain consisting of straight filaments, which appeared spontaneously after the strain with helicoidal trichomes had been subcultured. Morphological studies for the identification of the type and size of trichomes of the two strains (HF and SF) were carried out. The proportions of the two strains were observed to be stable during the monitoring period (30 days). Three different sets of semicontinuous cultures were carried out. Sets 1 and 2 were operated under regime 1 (a single addition of anaerobic effluents at time zero and no pH control) during the same season (June and July) of different years. Set 3 was operated under regime 2 (semi-continuous addition of anaerobic effluents and pH control) during the autumn. A minimum productivity of 3.6 g m−2 day−1 was obtained at one of the lowest temperatures (22.1 °C) and light intensities (245 μE m−2 s−1) and a maximum productivity of 10.9 g m−2 day−1 was observed at the highest temperature (25 °C) and highest average light intensity (618 μE m−2 s−1) registered for sets 1 and 2. The protein content in the Spirulina biomass harvested from these two sets varied from 17% to 65.6%. In set 3, a maximum productivity of 9.0 g m−2 day−1 was recorded at an average temperature of 24.4 °C and at an average light intensity of 668 μE m−2 s−1. The protein content in this set under regime 2 varied within a narrower range than in set 1 and set 2 (from 34.8% to 49.1%), apparently because of a continuous availability of ammonia nitrogen at a level of 30–50 mg l−1. However, in terms of the removal of ammonia nitrogen and chemical oxygen demand, regime 1 was more efficient than regime␣2. Received: 3 September 1996 / Received revision: 19 February 1997 / Accepted: 7 March 1997  相似文献   

19.
As an important adaptation for survival in the sediments of intertidal flats, benthic diatoms move up and down in response to a wide range of environmental stimuli. We investigated the vertical migration of two diatoms—Cylindrotheca closterium (Agradh) Kützing (B-25) and Nitzschia sp. (B-3)—under different combinations of light intensity and temperature conditions. An imaging pulse amplitude modulated (PAM) fluorometer was used to measure the minimum fluorescence (F 0) in order to monitor variations in diatom biomass in surface sediments. Rapid light curves (RLCs) were applied to assess their photosynthetic activities. Both species had increased motility under higher temperatures, with the longer valved C. closterium being twice as fast as the shorter valved Nitzschia sp. The former was also influenced by exposure to light intensities of 100 or 250 μmol m−2 s−1, whereas the latter was not. Consequently, no light/temperature interaction effect was associated with the vertical migration of Nitzschia sp., perhaps because of its lower photosynthetic capacity and smaller cell size. Therefore, we conclude that motile benthic diatoms exhibit species-specific responses to light and temperature due to differences in their photosynthetic capability and morphological characteristics.  相似文献   

20.
《Chirality》2017,29(1):19-25
The enantiomeric separation of the enantiomers of three phenylpyrazole pesticides (fipronil, flufiprole, ethiprole) and two fipronil metabolites (amide‐fipronil and acid‐fipronil) were investigated by high‐performance liquid chromatography (HPLC) with a CHIRALPAK® IB chiral column. The mobile phase was n‐ hexane or petroleum ether with 2‐propanol or ethanol as modifier at a flow rate of 1.0 mL/min. The influences of mobile phase composition and column temperature between 15 and 35°C on the separations were studied. All the analytes except ethiprole obtained complete enantiomeric separation after chromatographic condition optimization. Fipronil, flufiprole, amide‐fipronil, and acid‐fipronil obtained complete separation with the best resolution factors of 2.40, 3.40, 1.67, and 16.82, respectively, but ethiprole showed no enantioselectivity under the optimized conditions. In general, n‐ hexane with 2‐propanol gave better separations in most cases. The results showed decreasing temperature and content of modifier in the mobile phase resulted in better separation and longer analysis time as well. The thermodynamic parameters calculated according to linear the Van't Hoff equation indicated the chiral separations in the study were enthalpy‐driven. Fipronil and its two chiral hydrolyzed metabolites obtained baseline separation simultaneously under optimized conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号