首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The migration of vascular endothelial cells under flow can be modulated by the addition of chemical or mechanical stimuli. The aim of this study was to investigate how topographic cues derived from a substrate containing three-dimensional microtopography interact with fluid shear stress in directing endothelial cell migration. Subconfluent bovine aortic endothelial cells were seeded on fibronectin-coated poly(dimethylsiloxane) substrates patterned with a combinatorial array of parallel and orthogonal microgrooves ranging from 2 to 5 microm in width at a constant depth of 1 microm. During a 4-h time-lapse observation in the absence of flow, the majority of the prealigned cells migrated parallel to the grooves with the distribution of their focal adhesions (FAs) depending on the groove width. No change in this migratory pattern was observed after the cells were exposed to moderate shear stress (13.5 dyn/cm(2)), irrespective of groove direction with respect to flow. After 4-h exposure to high shear stress (58 dyn/cm(2)) parallel to the grooves, the cells continued to migrate in the direction of both grooves and flow. By contrast, when microgrooves were oriented perpendicular to flow, most cells migrated orthogonal to the grooves and downstream with flow. Despite the change in the migration direction of the cells under high shear stress, most FAs and actin microfilaments maintained their original alignment parallel to the grooves, suggesting that topographic cues were more effective than those derived from shear stress in guiding the orientation of cytoskeletal and adhesion proteins during the initial exposure to flow.  相似文献   

2.
Lin X  Helmke BP 《Biophysical journal》2008,95(6):3066-3078
Vascular endothelial cell migration is critical in many physiological processes including wound healing and stent endothelialization. To determine how preexisting cell morphology influences cell migration under fluid shear stress, endothelial cells were preset in an elongated morphology on micropatterned substrates, and unidirectional shear stress was applied either parallel or perpendicular to the cell elongation axis. On micropatterned 20-μm lines, cells exhibited an elongated morphology with stress fibers and focal adhesion sites aligned parallel to the lines. On 115-μm lines, cell morphology varied as a function of distance from the line edge. Unidirectional shear stress caused unpatterned cells in a confluent monolayer to exhibit triphasic mechanotaxis behavior. During the first 3 h, cell migration speed increased in a direction antiparallel to the shear stress direction. Migration speed then slowed and direction became spatially heterogeneous. Starting 11-12 h after the onset of shear stress, the unpatterned cells migrated primarily in the downstream direction, and migration speed increased significantly. In contrast, mechanotaxis was suppressed after the onset of shear stress in cells on micropatterned lines during the same time period, for the cases of both parallel and perpendicular flow. The directional persistence time was much longer for cells on the micropatterned lines, and it decreased significantly after flow onset. Migration trajectories were highly correlated among micropatterned cells within a three-cell neighborhood, and shear stress disrupted this spatially correlated migration behavior. Thus, presetting structural morphology may interfere with mechanisms of sensing local physical cues, which are critical for establishing mechanotaxis in response to hemodynamic shear stress.  相似文献   

3.
L.ymphocyte interactions with endothelial cells in microcirculation are an important regulatory step in the delivery of lymphocytes to peripheral sites of inflammation. In normal circumstances, the predicted wall shear stress in small venules range from 10 to 100 dyn/cm2. Attempts to measure the adhesion of lymphocytes under physiologic conditions have produced variable results, suggesting the importance of studying biologically relevant migratory lymphocytes. To quantify the effect of shear stress on these migratory lymphocytes, we used lymphocytes obtained from sheep efferent lymph ducts, defined as migratory cells, to perfuse sheep endothelial monolayers under conditions of flow. Quantitative cytomorphometry was used to distinguish cells in contact with the endothelial monolayers from cells in the flow stream. As expected, migratory cells in contact with the normal endothelial monolayer demonstrated flow velocities less than the velocity of cells in the adjacent flow stream. The flow velocities of these efferent lymphocytes were independent of cell size. To model the inflammatory microcirculation, lymphocytes were perfused over sequential endothelial monolayers to directly compare the velocity of cells in contact with cytokine-activated and unactivated control monolayers. The tumor necrosis factor and interleukin-1-activated endothelial monolayers marginally decreased cell velocities at 1.2 dyn/cm2 (3.6%), but significantly reduced cell velocities 0.3 dyn/cm2 (27.4%; P < 0.05). Similarly, the fraction of statically adherent lymphocytes decreased as shear stress increased to 1.2 dyn/cm2. These results suggest that typical wall shear stress in small venules. of the order of 20 dyn/cm2, are too high to permit adhesion and transmigration of migratory lymphocytes. Additional mechanisnis must be present in vivo to facilitate lymphocyte transmigration in the inflammatory microcircu-  相似文献   

4.
During pregnancy, trophoblasts enter the uterine vasculature and are found in spiral arteries far upstream of uterine capillaries. It is unknown whether trophoblasts reach the spiral arteries by migration within blood vessels against blood flow or by intravasation directly into spiral arteries after interstitial migration. We have developed an in vitro system consisting of early gestation macaque monkey trophoblasts cocultured with uterine endothelial cells and have exposed the cells in a parallel plate flow chamber to physiological levels of shear stress. Videomicroscopy followed by quantitative image analysis revealed that the migratory activity (expressed as average displacement and average migration velocity) of trophoblasts cultured on top of endothelial cells remained unchanged between shear stresses of 1-30 dyne/cm(2) whereas activity of trophoblasts alone increased with increasing shear stress. When the direction of migration was assessed at 1 and 7.5 dyne/cm(2), the extent of migration against and with flow was roughly equal for both trophoblasts alone and cocultured trophoblasts. At shear stress levels of 15 and 30 dyne/cm(2), trophoblasts incubated alone showed a significant decrease in migration against flow and corresponding increased migration in the direction of flow. In contrast, trophoblasts cocultured with uterine endothelial cells maintained the same extent of migration against flow at all shear stress levels. Migration against flow was also maintained when trophoblasts were cultured with endothelial cell-conditioned medium or fixed endothelial cells. The results indicate that factors expressed on the surface of uterine endothelial cells and factors released by endothelial regulate trophoblast migration under flow.  相似文献   

5.
Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.  相似文献   

6.
Shear stress stimulus is expected to enhance angiogenesis, the formation of microvessels. We determined the effect of shear stress stimulus on three-dimensional microvessel formation in vitro. Bovine pulmonary microvascular endothelial cells were seeded onto collagen gels with basic fibroblast growth factor to make a microvessel formation model. We observed this model in detail using phase-contrast microscopy, confocal laser scanning microscopy, and electron microscopy. The results show that cells invaded the collagen gel and reconstructed the tubular structures, containing a clearly defined lumen consisting of multiple cells. The model was placed in a parallel-plate flow chamber. A laminar shear stress of 0.3 Pa was applied to the surfaces of the cells for 48 h. Promotion of microvessel network formation was detectable after approximately 10 h in the flow chamber. After 48 h, the length of networks exposed to shear stress was 6.17 (+/-0.59) times longer than at the initial state, whereas the length of networks not exposed to shear stress was only 3.30 (+/-0.41) times longer. The number of bifurcations and endpoints increased for networks exposed to shear stress, whereas the number of bifurcations alone increased for networks not exposed to shear stress. These results demonstrate that shear stress applied to the surfaces of endothelial cells on collagen gel promotes the growth of microvessel network formation in the gel and expands the network because of repeated bifurcation and elongation.  相似文献   

7.
Control of endothelial cell gene expression by flow   总被引:13,自引:0,他引:13  
The vessel wall is constantly subjected to, and affected by, the stresses resulting from the hemodynamic stimuli of transmural pressure and flow. At the interface between blood and the vessel wall, the endothelial cell plays a crucial role in controlling vessel structure and function in response to changes in hemodynamic conditions. Using bovine aortic endothelium monolayers, we show that fluid shear stress causes simultaneous differential regulation of endothelial-derived products. We also report that the downregulation of endothelin-1 mRNA by flow is a reversible process, and through the use of uncharged dextran supplementation demonstrate it to be shear stress-rather than shear rate-dependent. Recent work on the effect of fluid shear stress on endothelial cell gene expression of a number of potent endothelial products is reviewed, including vasoactive substances, autocrine and paracrine growth factors, thrombosis/fibrinolysis modulators, chemotactic factors, surface receptors and immediate-early genes. The encountered patterns of gene expression responses are classified into three categories: a transient increase with return to baseline (type I), a sustained increase (type II) and a biphasic response consisting of an early transient increase of varying extent followed by a pronounced and sustained decrease (type III). The importance of the dynamic character of the flow stimulus and the magnitude dependence of the response are presented. Potential molecular mechanisms of shear-induced gene regulation, including putative shear stress response elements (SSRE), are discussed. These results suggest exquisite modulation of endothelial cell phenotype by local fluid shear stress and may offer insight into the mechanism of flow-dependent vascular remodeling and the observed propensity of atherosclerosis formation around bifurcations and areas of low shear stress.  相似文献   

8.
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

9.
During collective cell migration, the intercellular forces will significantly affect the collective migratory behaviors. However, the measurement of mechanical stresses exerted at cell–cell junctions is very challenging. A recent experimental observation indicated that the intercellular adhesion sites within a migrating monolayer are subjected to both normal stress exerted perpendicular to cell–cell junction surface and shear stress exerted tangent to cell–cell junction surface. In this study, an interfacial interaction model was proposed to model the intercellular interactions for the first time. The intercellular interaction model-based study of collective epithelial migration revealed that the direction of cell migration velocity has better alignment with the orientation of local principal stress at higher maximum shear stress locations in an epithelial monolayer sheet. Parametric study of the effects of adhesion strength indicated that normal adhesion strength at the cell–cell junction surface has dominated effect on local alignment between the direction of cell velocity vector and the principal stress orientation, while the shear adhesion strength has little effect, which provides compelling evidence to help explain the force transmission via cell–cell junctions between adjacent cells in collective cell motion and provides new insights into “adhesive belt” effects at cell–cell junction.  相似文献   

10.
Hemodynamic regulation of directional endothelial cell (EC) migration implies an essential role of shear stress in governing EC polarity. Shear stress induces reorientation of the microtubule organizing center toward the leading edge of migrating cells in a Cdc42-dependent manner. We have characterized the global patterns of EC migration in confluent monolayers as a function of shear stress direction and exogenous pleiotropic factors. Results demonstrate the presence of mitogenic factors significantly affects the flow-induced dynamics of movement by prolonging the onset of monolayer quiescence up to 4 days, but not shear stress-induced morphology. In conjunction with increased motility, exogenous growth factors contributed to the directed migration of ECs in the flow direction. ECs exposed to arterial flow in serum/growth factor-free media and then supplemented with growth factors rapidly increased directional migration to 85% of cells migrating in the direction of flow and induced an increase in the distance traveled with the flow direction. This response was modulated by the directionality of flow and inhibited by the expression of dominant-negative Par6, a major downstream effector of Cdc42-induced polarity. Shear stress-induced directed migratory polarity is modulated by exogenous growth factors and dependent on Par6 activity and shear stress direction.  相似文献   

11.
Vascular geometry is a major determinant of the hemodynamics that promote or prevent unnecessary vessel occlusion from thrombus formation. Bifurcations in the vascular geometry are repeating structures that introduce flow separation between parent and daughter vessels. We modelled the blood flow and shear rate in a bifurcation during thrombus formation and show that blood vessel bifurcation ratios determine the maximum shear rate on the surface of a growing thrombus. We built an analytical model that may aid in predicting microvascular bifurcation ratios that are prone to occlusive thrombus formation. We also observed that bifurcation ratios that adhere to Murray’s law of bifurcations may be protected from occlusive thrombus formation. These results may be useful in the rational design of diagnostic microfluidic devices and microfluidic blood oxygenators.  相似文献   

12.
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9–210 dyn/cm2. We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.  相似文献   

13.
Magic roundabout, a tumor endothelial marker: expression and signaling   总被引:3,自引:0,他引:3  
Molecular signals that guide blood vessels to specific paths are not fully deciphered, but are thought to be similar to signals that mediate neuronal guidance. These cues are not only critical for normal blood vessel development, but may also play a major role in tumor angiogenesis. In this study, we have demonstrated the tumor endothelial specific expression of a Robo family member, magic roundabout (MRB), functionally characterized its role in endothelial cell migration and defined a signaling pathway that might mediate this function. We show that MRB is differentially over-expressed in tumor endothelial cells versus normal adult endothelial cells in numerous solid tumors. Moreover, over-expression of MRB in endothelial cells activates MRB in a ligand-independent fashion, and activation of MRB via Slit2, a putative ligand, results in inhibition of VEGF and FGF induced migration. We also demonstrate that MRB induced inhibition of endothelial migration is partially mediated by the Ras-Raf-Mek-Erk signaling pathway. We therefore hypothesize that expression of MRB is involved in regulating the migration of endothelial cells during tumor angiogenesis.  相似文献   

14.
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9–210 dyn/cm2. We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.  相似文献   

15.
As the inner lining of the vessel wall, vascular endothelial cells are poised to act as a signal transduction interface between haemodynamic forces and the underlying vascular smooth-muscle cells. Detailed analyses of fluid mechanics in atherosclerosis-susceptible regions of the vasculature reveal a strong correlation between endothelial cell dysfunction and areas of low mean shear stress and oscillatory flow with flow recirculation. Conversely, steady shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective. The molecular basis of shear-induced mechanochemical signal transduction and the endothelium's ability to discriminate between flow profiles remains largely unclear. Given that fluid shear stress does not involve a traditional receptor/ligand interaction, identification of the molecule(s) responsible for sensing fluid flow and mechanical force discrimination has been difficult. This review will provide an overview of the haemodynamic forces experienced by the vascular endothelium and its role in localizing atherosclerotic lesions within specific regions of the vasculature. Also reviewed are several recent lines of evidence suggesting that both changes in membrane microviscosity linked to heterotrimeric G proteins, and the transmission of tension across the cell membrane to the cell-cell junction where known shear-sensitive proteins are localized, may serve as the primary force-sensing elements of the cell.  相似文献   

16.
Lymphocyte transendothelial migration (TEM) is promoted by fluid shear signals and apical endothelial chemokines. Studying the role of these signals in neutrophil migration across differently activated HUVEC in a flow chamber apparatus, we gained new insights into how neutrophils integrate multiple endothelial signals to promote TEM. Neutrophils crossed highly activated HUVEC in a beta(2) integrin-dependent manner but independently of shear. In contrast, neutrophil migration across resting or moderately activated endothelium with low-level beta(2) integrin ligand activity was dramatically augmented by endothelial-presented chemoattractants, conditional to application of physiological shear stresses and intact beta(2) integrins. Shear stress signals were found to stimulate extensive neutrophil invaginations into the apical endothelial interface both before and during TEM. A subset of invaginating neutrophils completed transcellular diapedesis through individual endothelial cells within <1 min. Our results suggest that low-level occupancy of beta(2) integrins by adherent neutrophils can mediate TEM only if properly coupled to stimulatory shear stress and chemoattractant signals transduced at the apical neutrophil-endothelial interface.  相似文献   

17.
Vascular development and homeostasis are underpinned by two fundamental features: the generation of new vessels to meet the metabolic demands of under-perfused regions and the elimination of vessels that do not sustain flow. In this paper we develop the first multiscale model of vascular tissue growth that combines blood flow, angiogenesis, vascular remodelling and the subcellular and tissue scale dynamics of multiple cell populations. Simulations show that vessel pruning, due to low wall shear stress, is highly sensitive to the pressure drop across a vascular network, the degree of pruning increasing as the pressure drop increases. In the model, low tissue oxygen levels alter the internal dynamics of normal cells, causing them to release vascular endothelial growth factor (VEGF), which stimulates angiogenic sprouting. Consequently, the level of blood oxygenation regulates the extent of angiogenesis, with higher oxygenation leading to fewer vessels. Simulations show that network remodelling (and de novo network formation) is best achieved via an appropriate balance between pruning and angiogenesis. An important factor is the strength of endothelial tip cell chemotaxis in response to VEGF. When a cluster of tumour cells is introduced into normal tissue, as the tumour grows hypoxic regions form, producing high levels of VEGF that stimulate angiogenesis and cause the vascular density to exceed that for normal tissue. If the original vessel network is sufficiently sparse then the tumour may remain localised near its parent vessel until new vessels bridge the gap to an adjacent vessel. This can lead to metastable periods, during which the tumour burden is approximately constant, followed by periods of rapid growth.  相似文献   

18.
The influence of blood flow on the depositions and development of atherosclerotic lesions have been observed and described since the 19th century. Observations have shown that depositions correlate with regions of low wall shear stress. However, the exact correlations between depositions, vessel geometry and flow parameters are not yet known. The purpose of this study was the quantification of atherosclerosis risk factors in carotid bifurcation. This artery has attracted particular interest because lesions are often found in this bifurcation. Post mortem, the arteries are excised and vessel casts are produced. Afterwards, the arteries are analyzed morphometrically. The vessel casts are used for the assessment of some geometrical parameters. 31 carotid bifurcations were analyzed in this study. Eight vessel casts were digitized and rendered three-dimensional mathematical models of the arteries. These data were imported by the computational fluid dynamics program FLUENT. Further, the blood flow was reconstructed in a computer model based on the individual vessel geometry. The flow parameters, such as velocity, pressure and wall shear stress were computed. At the same time the geometrical parameters and wall alterations are known. This permits the comparison of the anatomical shape and its flow with the distribution and level of the wall alterations.  相似文献   

19.
Angiogenic growth factors are a class of molecules which exert a fundamental role in the process of blood vessel formation. Besides vasculogenic and angiogenic properties, these compounds mediate a complex series of patterning activities during organogenesis. Angiogenic factors cooperate in the growth and development of embryo tissues in a cross-talk between endothelial cells and tissue cells. It is well established that many tissue-derived factors are involved in blood vessel formation, but there is now emerging evidence that angiogenic factors and endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, angiogenic factors and endothelial cell signalling are currently believed to provide fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article will summarize some of the recent advances in our understanding of the role of angiogenic factors and endothelial cells as effectors in organ formation.  相似文献   

20.
The migration of vascular endothelial cells in vivo occurs in a fluid dynamic environment due to blood flow, but the role of hemodynamic forces in cell migration is not yet completely understood. Here we investigated the effect of shear stress, the frictional drag of blood flowing over the cell surface, on the migration speed of individual endothelial cells on fibronectin-coated surfaces, as well as the biochemical and biophysical bases underlying this shear effect. Under static conditions, cell migration speed had a bell-shaped relationship with fibronectin concentration. Shear stress significantly increased the migration speed at all fibronectin concentrations tested and shifted the bell-shaped curve upwards. Shear stress also induced the activation of Rho GTPase and increased the traction force exerted by endothelial cells on the underlying substrate, both at the leading edge and the rear, suggesting that shear stress enhances both the frontal forward-pulling force and tail retraction. The inhibition of a Rho-associated kinase, p160ROCK, decreased the traction force and migration speed under both static and shear conditions and eliminated the shear-enhancement of migration speed. Our results indicate that shear stress enhances the migration speed of endothelial cells by modulating the biophysical force of tractions through the biochemical pathway of Rho-p160ROCK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号