首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The clinical management of anaplastic thyroid carcinoma and follicular thyroid carcinoma is challenging and requires an alternative therapeutic strategy. Although atovaquone is an FDA-approved anti-malarial drug, studies has recently demonstrated its anti-cancer activities. In line with these efforts, our study shows that atovaquone is an attractive candidate for thyroid cancer treatment. We show that atovaquone significantly inhibits growth, migration and survival in a concentration-dependent manner in 8505C and FTC113 cells. Mechanistically, atovaquone inhibits mitochondrial complex III activity, leading to mitochondrial respiration inhibition and reduction of ATP production in thyroid cancer cells. The inhibitory effects of atovaquone is reversed in mitochondrial respiration-deficient 8505C ρ0 cells, confirming mitochondrial respiration as the mechanism of atovaquone’s action in thyroid cancer. In addition, atovaquone suppresses phosphorylation of STAT3 in thyroid cancer wildype but not ρ0 cells, demonstrating that STAT3 phosphorylation inhibition by atovaquone is a consequence of mitochondrial respiration inhibition. Notably, we further demonstrate that atovaquone significantly augments doxorubicin’s inhibitory effects via suppressing mitochondrial respiration and STAT3. Our findings suggest that atovaquone can be repurposed for thyroid cancer treatment. Our work also highlights that targeting mitochondrial respiration may represent potential therapeutic strategy in thyroid cancer.  相似文献   

4.
5.
6.
BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival   总被引:20,自引:0,他引:20  
The BH3 domain of BAD mediates its death-promoting activities via heterodimerization to the Bcl-XL family of death regulators. Growth and survival factors inhibit the death-promoting activity of BAD by stimulating phosphorylation at multiple sites including Ser-112 and Ser-136. Phosphorylation at these sites promotes binding of BAD to 14-3-3 proteins, sequestering BAD away from the mitochondrial membrane where it dimerizes with Bcl-XL to exert its killing effects. We report here that the phosphorylation of BAD at Ser-155 within the BH3 domain is a second phosphorylation-dependent mechanism that inhibits the death-promoting activity of BAD. Protein kinase A, RSK1, and survival factor signaling stimulate phosphorylation of BAD at Ser-155, blocking the binding of BAD to Bcl-XL. RSK1 phosphorylates BAD at both Ser-112 and Ser-155 and rescues BAD-mediated cell death in a manner dependent upon phosphorylation at both sites.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号