首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transforming growth factor-β (TGFβ) promotes glomerular hypertrophy and matrix expansion, leading to glomerulosclerosis. MicroRNAs are well suited to promote fibrosis because they can repress gene expression, which negatively regulate the fibrotic process. Recent cellular and animal studies have revealed enhanced expression of microRNA, miR-21, in renal cells in response to TGFβ. Specific miR-21 targets downstream of TGFβ receptor activation that control cell hypertrophy and matrix protein expression have not been studied. Using 3'UTR-driven luciferase reporter, we identified the tumor suppressor protein PTEN as a target of TGFβ-stimulated miR-21 in glomerular mesangial cells. Expression of miR-21 Sponge, which quenches endogenous miR-21 levels, reversed TGFβ-induced suppression of PTEN. Additionally, miR-21 Sponge inhibited TGFβ-stimulated phosphorylation of Akt kinase, resulting in attenuation of phosphorylation of its substrate GSK3β. Tuberin and PRAS40, two other Akt substrates, and endogenous inhibitors of mTORC1, regulate mesangial cell hypertrophy. Neutralization of endogenous miR-21 abrogated TGFβ-stimulated phosphorylation of tuberin and PRAS40, leading to inhibition of phosphorylation of S6 kinase, mTOR and 4EBP-1. Moreover, downregulation of miR-21 significantly suppressed TGFβ-induced protein synthesis and hypertrophy, which were reversed by siRNA-targeted inhibition of PTEN expression. Similarly, expression of constitutively active Akt kinase reversed the miR-21 Sponge-mediated inhibition of TGFβ-induced protein synthesis and hypertrophy. Furthermore, expression of constitutively active mTORC1 prevented the miR-21 Sponge-induced suppression of mesangial cell protein synthesis and hypertrophy by TGFβ. Finally, we show that miR-21 Sponge inhibited TGFβ-stimulated fibronectin and collagen expression. Suppression of PTEN expression and expression of both constitutively active Akt kinase and mTORC1 independently reversed this miR-21-mediated inhibition of TGFβ-induced fibronectin and collagen expression. Our results uncover an essential role of TGFβ-induced expression of miR-21, which targets PTEN to initiate a non-canonical signaling circuit involving Akt/mTORC1 axis for mesangial cell hypertrophy and matrix protein synthesis.  相似文献   

2.
Myofibroblast transdifferentiation plays a crucial role in the development and progression of renal tubulointerstitial fibrosis. However, the significance of α-smooth muscle actin (α-SMA) expression, which is the major morphological characteristic of myofibroblasts, remains to be determined in detail. The effect of α-SMA expression on fibrosis tissue was examined by using a fibrosis model (collagen gel) in vitro. The transdifferentiation of fibroblasts into myofibroblasts was triggered in the culture medium with 0.5% fetal bovine serum (FBS)+transforming growth factor (TGF)-β1, but not with 10% FBS+TGF-β1. The TGF-β1-induced gel contraction caused by myofibroblasts was greater than that by fibroblasts. Gel contraction by myofibroblasts involved the Ca2+-dependent myosin light chain kinase pathway, as well as the activation of Rho kinase and p38 mitogen-activated protein kinase (MAPK). Taken together, these findings suggest that α-SMA expression in renal interstitial fibroblasts, i.e., myofibroblast transdifferentiation, accelerates the contraction of the tubulointerstitial fibrosis tissue via the Ca2+-dependent pathway, in addition to the pathways involved in fibroblast contraction; this event may lead to renal atrophy and renal failure.  相似文献   

3.
Activation of mesangial cells (MCs), which is characterized by induction of smooth muscle α-actin (SMA) expression, contributes to a key event in various renal diseases; however, the mechanisms controlling MC differentiation are still largely undefined. Activated Smad1 induced SMA in a dose-dependent manner in MCs. As a direct regulating molecule for SMA, we identified and characterized scleraxis (Scx) as a new phenotype modulator in advanced glycation end product (AGE)-exposed MCs. Scx physically associated with E12 and bound the E-box in the promoter of SMA and negatively regulated the AGE-induced SMA expression. Scx induced expression and secretion of bone morphogenetic protein 4 (BMP4), thereby controlling the Smad1 activation in AGE-treated MCs. In diabetic mice, Scx was concomitantly expressed with SMA in the glomeruli. Inhibitor of differentiation 1 (Id1) was further induced by extended treatment with AGE, thereby dislodging Scx from the SMA promoter. These data suggest that Scx and Id1 are involved in the BMP4-Smad1-SMA signal transduction pathway besides the TGFβ1-Smad1-SMA signaling pathway and modulate phenotypic changes in MCs in diabetic nephropathy.  相似文献   

4.
Excess scarring of the conjunctiva after glaucoma filtration surgery is a major cause of failure. Transforming growth factor (TGF)-β is critically involved in post-operative scarring. Lithium inhibits TGF-β-induced gene protein expression in corneal fibroblasts and inhibits TGF-β-induced epithelial mesenchymal transition. Here, we investigated the effects of LiCl on TGF-β1-mediated signaling pathways and on myofibroblast transdifferentiation of human Tenon’s capsule fibroblasts (HTFs). LiCl treatment reduced expression of TGF-β1-induced α-SMA expression in HTFs. LiCl also decreased Akt phosphorylation induced by TGF-β1. TGF-β1-induced α-SMA expression was significantly decreased by LY294002 and Akt siRNA indicating that these changes are mediated by the PI3K/Akt pathway. Thus, LiCl induces the suppression of transdifferentiation stimulated by TGF-β1 by the regulation of PI3K/Akt signaling in HTFs.  相似文献   

5.
6.
7.
Fibroblast-myofibroblast transdifferentiation (FMT) is widely recognized as the major pathological feature of renal fibrosis. Although melatonin has exerted antifibrogenic activity in many diseases, its role in renal FMT remains unclear. In the present study, the aim was to explore the effect of melatonin on renal FMT and the underlying mechanisms. We established the transforming growth factor (TGF)-β1 stimulated rat renal fibroblast cells (NRK-49F) model in vitro and unilateral ureteral obstruction (UUO) mice model in vivo. We assessed levels of α-smooth muscle actin (α-SMA), col1a1 and fibronectin, STAT3 and AP-1, as well as miR-21-5p and its target genes (Spry1, PTEN, Smurf2 and PDCD4). We found that melatonin reduced the expression of α-SMA, col1a1 and fibronectin, as well as the formation of α-SMA filament in TGF-β1-treated NRK-49F cells. Meanwhile, melatonin inhibited STAT3 phosphorylation, down-regulated miR-21-5p expression, and up-regulated Spry1 and PTEN expression. Moreover, miR-21-5p mimics partially antagonized the anti-fibrotic effect of melatonin. For animal experiments, the results revealed that melatonin remarkably ameliorated UUO-induced renal fibrosis, attenuated the expression of miR-21-5p and pro-fibrotic proteins and elevated Spry1 and PTEN expression. Nevertheless, agomir of miR-21-5p blocked the renoprotective effect of melatonin in UUO mice. These results indicated that melatonin could alleviate TGF-β1-induced renal FMT and UUO-induced renal fibrosis through down-regulation of miR-21-5p. Regulation of miR-21-5p/PTEN and/or miR-21-5p/Spry1 signal might be involved in the anti-fibrotic effect of melatonin in the kidneys of UUO mice.  相似文献   

8.
Renal fibrosis, the ultimate common pathway of progressive nephropathy, is characterized by excess accumulation and deposition of extracellular matrix (ECM) within the renal interstitium and glomeruli, finally resulting in end-stage kidney failure. TGFβ1 is not only abnormally increased during fibrosis but also involved in ECM induction and accumulation. Based on the bioinformative analyses, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and focal adhesion kinase (FAK) signaling pathway might be involved in TGFβ1 functions on renal fibrosis development. In the present study, fibrosis was induced in HK-2 cells using TGFβ1 and PTEN expression was significantly suppressed by 24 or 48 hours TGFβ1 treatment. PTEN overexpression in HK-2 cells improved TGFβ1-induced fibrosis within α-SMA and E-cadherin. According to the KEGG signaling pathway annotation analyses on microarray profiles (GSE23338 and GSE20247) and immunoblotting validation, FAK signaling might be involved in PTEN functions in TGFβ1-induced fibrosis. PTEN overexpression significantly inhibited TGFβ1- or unilateral ureteral obstruction (UUO)-induced FAK signaling pathway activation both in vitro and in vivo; more importantly, PTEN silence enhanced TGFβ1- or UUO-induced fibrosis, while FAK inhibitor PF567721 significantly reversed the effects of PTEN silence, indicating that PTEN exerted its effects on TGFβ1- and UUO-induced fibrotic development in vitro and in vivo via inhibiting FAK signaling pathway. In summary, these findings indicate that PTEN could improve cellular fibrotic changes and renal fibrosis via inhibiting FAK/AKT signaling pathway. Restoring PTEN expression to target FAK/AKT signaling pathway might be a potent strategy for renal fibrosis treatment.  相似文献   

9.
Although Smad3 is a key mediator for fibrosis, its functional role and mechanisms in hypertensive nephropathy remain largely unclear. This was examined in the present study in a mouse model of hypertension induced in Smad3 knockout (KO) and wild-type (WT) mice by subcutaneous angiotensin II infusion and in vitro in mesangial cells lacking Smad3. After angiotensin II infusion, both Smad3 KO and WT mice developed equally high levels of blood pressure. However, disruption of Smad3 prevented angiotensin II-induced kidney injury by lowering albuminuria and serum creatinine (P < 0.01), inhibiting renal fibrosis such as collagen type I and IV, fibronectin, and α-SMA expression (all P < 0.01), and blocking renal inflammation including macrophage and T cell infiltration and upregulation of IL-1β, TNF-α, and monocyte chemoattractant protein-1 in vivo and in vitro (all P < 0.001). Further studies revealed that blockade of angiotensin II-induced renal transforming growth factor (TGF)-β1 expression and inhibition of Smurf2-mediated degradation of renal Smad7 are mechanisms by which Smad3 KO mice were protected from angiotensin II-induced renal fibrosis and NF-κB-driven renal inflammation in vivo and in vitro. In conclusion, Smad3 is a key mediator of hypertensive nephropathy. Smad3 promotes Smurf2-dependent ubiquitin degradation of renal Smad7, thereby enhancing angiotensin II-induced TGF-β/Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Results from this study suggest that inhibition of Smad3 or overexpression of Smad7 may be a novel therapeutic strategy for hypertensive nephropathy.  相似文献   

10.

Background

Non-alcoholic steatohepatitis (NASH) is a subset of non-alcoholic fatty liver disease, the most common chronic liver disease in the U.S. Fibrosis, a common feature of NASH, results from the dysregulation of fibrogenesis in hepatic stellate cells (HSCs). In this study, we investigated whether astaxanthin (ASTX), a xanthophyll carotenoid, can inhibit fibrogenic effects of transforming growth factor β1 (TGFβ1), a key fibrogenic cytokine, in HSCs.

Methods

Reactive oxygen species (ROS) accumulation was measured in LX-2, an immortalized human HSC cell line. Quantitative realtime PCR, Western blot, immunocytochemical analysis, and in-cell Western blot were performed to determine mRNA and protein of fibrogenic genes, and the activation of Smad3 in TGFβ1-activated LX-2 cells and primary mouse HSCs.

Results

In LX-2 cells, ROS accumulation induced by tert-butyl hydrogen peroxide and TGFβ1 was abolished by ASTX. ASTX significantly decreased TGFβ1-induced α-smooth muscle actin (α-SMA) and procollagen type 1, alpha 1 (Col1A1) mRNA as well as α-SMA protein levels. Knockdown of Smad3 showed the significant role of Smad3 in the expression of α-SMA and Col1A1, but not TGFβ1, in LX-2 cells. ASTX attenuated TGFβ1-induced Smad3 phosphorylation and nuclear translocation with a concomitant inhibition of Smad3, Smad7, TGFβ receptor I (TβRI), and TβRII expression. The inhibitory effect of ASTX on HSC activation was confirmed in primary mouse HSCs as evidenced by decreased mRNA and protein levels of α-SMA during activation.

Conclusion

Taken together, ASTX exerted anti-fibrogenic effects by blocking TGFβ1-signaling, consequently inhibiting the activation of Smad3 pathway in HSCs.

General significance

This study suggests that ASTX may be used as a preventive/therapeutic agent to prevent hepatic fibrosis.  相似文献   

11.
12.
Renal interstitial fibrosis is a common renal injury resulted from a variety of chronic kidney conditions and an array of factors. We report here that Notch3 is a potential contributor. In comparison to 6 healthy individuals, a robust elevation of Notch3 expression was observed in the renal tubular epithelial cells of 18 patients with obstructive nephropathy. In a rat unilateral ureteral obstruction (UUO) model which mimics the human disease, Notch3 upregulation closely followed the course of renal injury, renal fibrosis, TGFβ expression, and alpha-smooth muscle actin (α-SMA) expression, suggesting a role of Notch3 in promoting tubulointerstitial fibrosis. This possibility was supported by the observation that TGFβ, the major renal fibrogenic cytokine, stimulated Notch3 expression in human proximal tubule epithelial HK-2 cells. TGFβ enhanced the activation of ERK, p38, but not JNK MAP kinases in HK-2 cells. While inhibition of p38 activation using SB203580 did not affect TGFβ-induced Notch3 expression, inhibition of ERK activation with a MEK1 inhibitor PD98059 dramatically reduced the event. Furthermore, enforced ERK activation through overexpression of the constitutively active MEK1 mutant MEK1Q56P upregulated Notch3 expression in HK-2 cells, and PD98059 reduced ERK activation and Notch3 expression in HK-2 cells expressing MEK1Q56P. Collectively, we provide the first clinical evidence for Notch3 upregulation in patients with obstructive nephropathy; the upregulation is likely mediated through the TGFβ-ERK pathway. This study suggests that Notch3 upregulation contributes to renal injury caused by obstructive nephropathy, which could be prevented or delayed through ERK inhibition.  相似文献   

13.
eEF2 phosphorylation is under tight control to maintain mRNA translation elongation. We report that TGFβ activates eEF2 by decreasing eEF2 phosphorylation and simultaneously increasing eEF2 kinase phosphorylation. Remarkably, inhibition of Erk1/2 blocked the TGFβ-induced dephosphorylation and phosphorylation of eEF2 and eEF2 kinase. TGFβ increased phosphorylation of p90Rsk in an Erk1/2-dependent manner. Inactive p90Rsk reversed TGFβ-inhibited phosphorylation of eEF2 and suppressed eEF2 kinase activity. Finally, inactive p90Rsk significantly attenuated TGFβ-induced protein synthesis and hypertrophy of mesangial cells. These results present the first evidence that TGFβ utilizes the two layered kinase module Erk/p90Rsk to activate eEF2 for increased protein synthesis during cellular hypertrophy.  相似文献   

14.
Bindarit     
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases (including lupus nephritis, arthritis and pancreatitis). The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the "early inflammatory response," although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.  相似文献   

15.
16.
Adult cardiac valve endothelial cells (VEC) undergo endothelial to mesenchymal transformation (EndMT) in response to transforming growth factor-β (TGFβ). EndMT has been proposed as a mechanism to replenish interstitial cells that reside within the leaflets and further, as an adaptive response that increases the size of mitral valve leaflets after myocardial infarction. To better understand valvular EndMT, we investigated TGFβ-induced signaling in mitral VEC, and carotid artery endothelial cells (CAEC) as a control. Expression of EndMT target genes α-smooth muscle actin (α-SMA), Snai1, Slug, and MMP-2 were used to monitor EndMT. We show that TGFβ-induced EndMT increases phosphorylation of ERK (p-ERK), and this is blocked by Losartan, an FDA-approved antagonist of the angiotensin II type 1 receptor (AT1), that is known to indirectly inhibit phosphorylation of ERK (p-ERK). Blocking TGF-β-induced p-ERK directly with the MEK1/2 inhibitor RDEA119 was sufficient to prevent EndMT. In mitral VECs, TGFβ had only modest effects on phosphorylation of the canonical TGF-β signaling mediator mothers against decapentaplegic homolog 3 (SMAD3). These results indicate a predominance of the non-canonical p-ERK pathway in TGFβ-mediated EndMT in mitral VECs. AT1 and angiotensin II type 2 (AT2) were detected in mitral VEC, and high concentrations of angiotensin II (AngII) stimulated EndMT, which was blocked by Losartan. The ability of Losartan or MEK1/2 inhibitors to block EndMT suggests these drugs may be useful in manipulating EndMT to prevent excessive growth and fibrosis that occurs in the leaflets after myocardial infarction.  相似文献   

17.
Bindarit is an indazolic derivative that is devoid of any immunosuppressive effects and has no effect on arachidonic acid metabolism. However, it has been proved to have anti-inflammatory activity in a number of experimental diseases, including pancreatitis, arthritis, and lupus nephritis. This therapeutic effect has been associated with its ability to interfere selectively with monocyte recruitment, although the underlying molecular mechanisms are unknown. Here we comprehensively examine the effect of bindarit on the chemokine system, and report that in activated monocytes and endothelial cells, it selectively inhibits the production of the monocyte chemotactic protein subfamily of CC inflammatory chemokines (MCP-1/CCL2, MCP-3/CCL7, MCP-2/CCL8). The capacity of bindarit to inhibit the production of a defined set of related CC chemokines by monocytes and endothelial cells likely underlies the anti-inflammatory activity of this agent in disease. The exploitation of the chemokine system as drug target in inflammatory disease has relied mainly on the development of receptor antagonists and blocking antibodies. Here we report on the use of inhibition of synthesis as a potentially viable and selective approach to modify the chemokine system.  相似文献   

18.
19.
ABSTRACT

C-C motif Chemokine ligand 8 (CCL8) has been found in diseases’ pathogenesis. But its molecular mechanism in atherosclerosis (AS) remains to be elucidated. Human aortic smooth muscle cells (HASMCs) were stimulated by PDGF-BB to establish cell model. α-SMA in PDGF-BB-stimulated HASMCs was measured by immunofluorescence staining. Relative gene expressions in PDGF-BB-stimulated HASMCs were detected by quantitative real-time polymerase chain reaction and western blot. HASMCs proliferation, migration, and cell cycle were assessed by cell counting kit-8, wound-healing assay, and flow cytometry. HASMCs viability was increased after PDGF-BB stimulation, with α-SMA downregulation yet CCL8 upregulation. Silencing CCL8 inhibited PDGF-BB-stimulated HASMCs proliferation and migration, and increased cells percentage in G1 phases but decreased those in S phase. Also, silencing CCL8 decreased OPN and cyclinD1 expressions and AKT and ERK1/2 phosphorylation while increased those of α-SMA and Sm22α. However, upregulating CCL8 led to opposite effects, suggesting CCL8 could be an atherosclerosis therapeutic target.  相似文献   

20.
Transforming growth factorβ (TGFβ)‐induced canonical signal transduction is involved in glomerular mesangial cell hypertrophy; however, the role played by the noncanonical TGFβ signaling remains largely unexplored. TGFβ time‐dependently stimulated eIF4E phosphorylation at Ser‐209 concomitant with enhanced phosphorylation of Erk1/2 (extracellular signal regulated kinase1/2) and MEK (mitogen‐activated and extracellular signal‐regulated kinase kinase) in mesangial cells. Inhibition of Erk1/2 by MEK inhibitor or by expression of dominant negative Erk2 blocked eIF4E phosphorylation, resulting in attenuation of TGFβ‐induced protein synthesis and mesangial cell hypertrophy. Expression of constitutively active (CA) MEK was sufficient to induce protein synthesis and hypertrophy similar to those induced by TGFβ. Pharmacological or dominant negative inhibition of phosphatidylinositol (PI) 3 kinase decreased MEK/Erk1/2 phosphorylation leading to suppression of eIF4E phosphorylation. Inducible phosphorylation of eIF4E at Ser‐209 is mediated by Mnk‐1 (mitogen‐activated protein kinase signal‐integrating kinase‐1). Both PI 3 kinase and Erk1/2 promoted phosphorylation of Mnk‐1 in response to TGFβ. Dominant negative Mnk‐1 significantly inhibited TGFβ‐stimulated protein synthesis and hypertrophy. Interestingly, inhibition of mTORC1 activity, which blocks dissociation of eIF4E‐4EBP‐1 complex, decreased TGFβ‐stimulated phosphorylation of eIF4E without any effect on Mnk‐1 phosphorylation. Furthermore, mutant eIF4E S209D, which mimics phosphorylated eIF4E, promoted protein synthesis and hypertrophy similar to TGFβ. These results were confirmed using phosphorylation deficient mutant of eIF4E. Together our results highlight a significant role of dissociation of 4EBP‐1‐eIF4E complex for Mnk‐1‐mediated phosphorylation of eIF4E. Moreover, we conclude that TGFβ‐induced noncanonical signaling circuit involving PI 3 kinase‐dependent Mnk‐1‐mediated phosphorylation of eIF4E at Ser‐209 is required to facilitate mesangial cell hypertrophy. J. Cell. Physiol. 228: 1617–1626, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号