首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
Wenguang Shao  Kan Zhu  Henry Lam 《Proteomics》2013,13(22):3273-3283
Spectral library searching is a maturing approach for peptide identification from MS/MS, offering an alternative to traditional sequence database searching. Spectral library searching relies on direct spectrum‐to‐spectrum matching between the query data and the spectral library, which affords better discrimination of true and false matches, leading to improved sensitivity. However, due to the inherent diversity of the peak location and intensity profiles of real spectra, the resulting similarity score distributions often take on unpredictable shapes. This makes it difficult to model the scores of the false matches accurately, necessitating the use of decoy searching to sample the score distribution of the false matches. Here, we refined the similarity scoring in spectral library searching to enable the validation of spectral search results without the use of decoys. We rank‐transformed the peak intensities to standardize all spectra, making it possible to fit a parametric distribution to the scores of the nontop‐scoring spectral matches. The statistical significance of the top‐scoring match can then be estimated in a rigorous manner according to Extreme Value Theory. The overall result is a more robust and interpretable measure of the quality of the spectral match, which can be obtained without decoys. We tested this refined similarity scoring function on real datasets and demonstrated its effectiveness. This approach reduces search time, increases sensitivity, and extends spectral library searching to situations where decoy spectra cannot be readily generated, such as in searching unidentified and nonpeptide spectral libraries.  相似文献   

2.
Protein quantification using data‐independent acquisition methods such as SWATH‐MS most commonly relies on spectral matching to a reference MS/MS assay library. To enable deep proteome coverage and efficient use of existing data, in silico approaches have been described to use archived or publicly available large reference spectral libraries for spectral matching. Since implicit in the use of larger libraries is the increasing likelihood of false‐discoveries, new workflows are needed to ensure high confidence in protein matching under these conditions. We present a workflow which introduces a range of filters and thresholds aimed at increasing confidence that the resulting proteins are reliably detected and their quantitation is consistent and reproducible. We demonstrated the workflow using extended libraries with SWATH data from human plasma samples and yeast‐spiked human K562 cell lysate digest.  相似文献   

3.

Introduction

Mass spectrometry is the current technique of choice in studying drug metabolism. High-resolution mass spectrometry in combination with MS/MS gas-phase experiments has the potential to contribute to rapid advances in this field. However, the data emerging from such fragmentation spectral files pose challenges to downstream analysis, given their complexity and size.

Objectives

This study aims to detect and visualize antihypertensive drug metabolites in untargeted metabolomics experiments based on the spectral similarity of their fragmentation spectra. Furthermore, spectral clusters of endogenous metabolites were also examined.

Methods

Here we apply a molecular networking approach to seek drugs and their metabolites, in fragmentation spectra from urine derived from a cohort of 26 patients on antihypertensive therapy. The mass spectrometry data was collected on a Thermo Q-Exactive coupled to pHILIC chromatography using data dependent analysis (DDA) MS/MS gas-phase experiments.

Results

In total, 165 separate drug metabolites were found and structurally annotated (17 by spectral matching and 122 by classification based on a clustered fragmentation pattern). The clusters could be traced to 13 drugs including the known antihypertensives verapamil, losartan and amlodipine. The molecular networking approach also generated clusters of endogenous metabolites, including carnitine derivatives, and conjugates containing glutamine, glutamate and trigonelline.

Conclusions

The approach offers unprecedented capability in the untargeted identification of drugs and their metabolites at the population level and has great potential to contribute to understanding stratified responses to drugs where differences in drug metabolism may determine treatment outcome.
  相似文献   

4.
5.
Zhang X  Li Y  Shao W  Lam H 《Proteomics》2011,11(6):1075-1085
Spectral library searching has been recently proposed as an alternative to sequence database searching for peptide identification from MS/MS. We performed a systematic comparison between spectral library searching and sequence database searching using a wide variety of data to better demonstrate, and understand, the superior sensitivity of the former observed in preliminary studies. By decoupling the effect of search space, we demonstrated that the success of spectral library searching is primarily attributable to the use of real library spectra for matching, without which the sensitivity advantage largely disappears. We further determined the extent to which the use of real peak intensities and non-canonical fragments, both under-utilized information in sequence database searching, contributes to the sensitivity advantage. Lastly, we showed that spectral library searching is disproportionately more successful in identifying low-quality spectra, and complex spectra of higher- charged precursors, both important frontiers in peptide sequencing. Our results answered important outstanding questions about this promising yet unproven method using well-controlled computational experiments and sound statistical approaches.  相似文献   

6.
An overview is presented of gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), the two major hyphenated techniques employed in metabolic profiling that complement direct 'fingerprinting' methods such as atmospheric pressure ionization (API) quadrupole time-of-flight MS, API Fourier transform MS, and NMR. In GC/MS, the analytes are normally derivatized prior to analysis in order to reduce their polarity and facilitate chromatographic separation. The electron ionization mass spectra obtained are reproducible and suitable for library matching, mass spectral collections being readily available. In LC/MS, derivatization and library matching are at an early stage of development and mini-reviews are provided. Chemical derivatization can dramatically increase the sensitivity and specificity of LC/MS methods for less polar compounds and provides additional structural information. The potential of derivatization for metabolic profiling in LC/MS is demonstrated by the enhanced analysis of plant extracts, including the potential to measure volatile acids such as formic acid, difficult to achieve by GC/MS. The important role of mass spectral library creation and usage in these techniques is discussed and illustrated by examples.  相似文献   

7.
The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies.  相似文献   

8.
9.
A rapid method for similarity searches (FASTP program) was used to identify similarities between a protein database and the human basic proteins from myelin [P2 protein and 17.2K, 18.5K, and 21.5K variants of myelin basic protein (MBP)]. From similarity scores, we concluded that none of the presently known proteins are in a family containing the MBPs. No new members were found for the lipid-binding family of which P2 is a member. Sequence similarities deemed relevant to the molecular mimicry hypothesis for virus-induced autoimmunity were identified in FASTP data with the aid of microcomputer programs. Several MBP/viral protein similarities were found that have not been reported previously. Of note because of their association with demyelinating conditions were proteins from visna and vaccinia. Similarity with visna was specific to the 21.5K and 20.2K MBPs. The most interesting new possibility for mimicry involving the P2 protein was between the influenza A NS2 protein and a sequence region of P2 thought to be neuritogenic in animals and mitogenic for lymphocytes from some patients with Guillain-Barré syndrome (GBS). This may have relevance for some cases of GBS associated with the 1976 U.S.A. swine flu vaccination program. Because FASTP reports only the best similarities between proteins, searches with FASTP may not have detected all the examples of mimicry present in the database. Searches might also be more effective if similarities could be scored on immunological rather than structural relatedness.  相似文献   

10.
Brakoulias A  Jackson RM 《Proteins》2004,56(2):250-260
A method is described for the rapid comparison of protein binding sites using geometric matching to detect similar three-dimensional structure. The geometric matching detects common atomic features through identification of the maximum common sub-graph or clique. These features are not necessarily evident from sequence or from global structural similarity giving additional insight into molecular recognition not evident from current sequence or structural classification schemes. Here we use the method to produce an all-against-all comparison of phosphate binding sites in a number of different nucleotide phosphate-binding proteins. The similarity search is combined with clustering of similar sites to allow a preliminary structural classification. Clustering by site similarity produces a classification of binding sites for the 476 representative local environments producing ten main clusters representing half of the representative environments. The similarities make sense in terms of both structural and functional classification schemes. The ten main clusters represent a very limited number of unique structural binding motifs for phosphate. These are the structural P-loop, di-nucleotide binding motif [FAD/NAD(P)-binding and Rossman-like fold] and FAD-binding motif. Similar classification schemes for nucleotide binding proteins have also been arrived at independently by others using different methods.  相似文献   

11.
A notable inefficiency of shotgun proteomics experiments is the repeated rediscovery of the same identifiable peptides by sequence database searching methods, which often are time-consuming and error-prone. A more precise and efficient method, in which previously observed and identified peptide MS/MS spectra are catalogued and condensed into searchable spectral libraries to allow new identifications by spectral matching, is seen as a promising alternative. To that end, an open-source, functionally complete, high-throughput and readily extensible MS/MS spectral searching tool, SpectraST, was developed. A high-quality spectral library was constructed by combining the high-confidence identifications of millions of spectra taken from various data repositories and searched using four sequence search engines. The resulting library consists of over 30,000 spectra for Saccharomyces cerevisiae. Using this library, SpectraST vastly outperforms the sequence search engine SEQUEST in terms of speed and the ability to discriminate good and bad hits. A unique advantage of SpectraST is its full integration into the popular Trans Proteomic Pipeline suite of software, which facilitates user adoption and provides important functionalities such as peptide and protein probability assignment, quantification, and data visualization. This method of spectral library searching is especially suited for targeted proteomics applications, offering superior performance to traditional sequence searching.  相似文献   

12.
We report an isotope labeling shotgun proteome analysis strategy to validate the spectrum-to-sequence assignments generated by using sequence-database searching for the construction of a more reliable MS/MS spectral library. This strategy is demonstrated in the analysis of the E. coli K12 proteome. In the workflow, E. coli cells were cultured in normal and (15)N-enriched media. The differentially labeled proteins from the cell extracts were subjected to trypsin digestion and two-dimensional liquid chromatography quadrupole time-of-flight tandem mass spectrometry (2D-LC QTOF MS/MS) analysis. The MS/MS spectra of the two samples were individually searched using Mascot against the E. coli proteome database to generate lists of peptide sequence matches. The two data sets were compared by overlaying the spectra of unlabeled and labeled matches of the same peptide sequence for validation. Two cutoff filters, one based on the number of common fragment ions and another one on the similarity of intensity patterns among the common ions, were developed and applied to the overlaid spectral pairs to reject the low quality or incorrectly assigned spectra. By examining 257,907 and 245,156 spectra acquired from the unlabeled and (15)N-labeled samples, respectively, an experimentally validated MS/MS spectral library of tryptic peptides was constructed for E. coli K12 that consisted of 9,302 unique spectra with unique sequence and charge state, representing 7,763 unique peptide sequences. This E. coli spectral library could be readily expanded, and the overall strategy should be applicable to other organisms. Even with this relatively small library, it was shown that more peptides could be identified with higher confidence using the spectral search method than by sequence-database searching.  相似文献   

13.
Searching spectral libraries in MS/MS is an important new approach to improving the quality of peptide and protein identification. The idea relies on the observation that ion intensities in an MS/MS spectrum of a given peptide are generally reproducible across experiments, and thus, matching between spectra from an experiment and the spectra of previously identified peptides stored in a spectral library can lead to better peptide identification compared to the traditional database search. However, the use of libraries is greatly limited by their coverage of peptide sequences: even for well‐studied organisms a large fraction of peptides have not been previously identified. To address this issue, we propose to expand spectral libraries by predicting the MS/MS spectra of peptides based on the spectra of peptides with similar sequences. We first demonstrate that the intensity patterns of dominant fragment ions between similar peptides tend to be similar. In accordance with this observation, we develop a neighbor‐based approach that first selects peptides that are likely to have spectra similar to the target peptide and then combines their spectra using a weighted K‐nearest neighbor method to accurately predict fragment ion intensities corresponding to the target peptide. This approach has the potential to predict spectra for every peptide in the proteome. When rigorous quality criteria are applied, we estimate that the method increases the coverage of spectral libraries available from the National Institute of Standards and Technology by 20–60%, although the values vary with peptide length and charge state. We find that the overall best search performance is achieved when spectral libraries are supplemented by the high quality predicted spectra.  相似文献   

14.
Spectral library searching is an emerging approach in peptide identifications from tandem mass spectra, a critical step in proteomic data analysis. In spectral library searching, a spectral library is first meticulously compiled from a large collection of previously observed peptide MS/MS spectra that are conclusively assigned to their corresponding amino acid sequence. An unknown spectrum is then identified by comparing it to all the candidates in the spectral library for the most similar match. This review discusses the basic principles of spectral library building and searching, describes its advantages and limitations, and provides a primer for researchers interested in adopting this new approach in their data analysis. It will also discuss the future outlook on the evolution and utility of spectral libraries in the field of proteomics.  相似文献   

15.
Vicinity analysis (VA) is a new methodology developed to identify similarities between protein binding sites based on their three-dimensional structure and the chemical similarity of matching residues. The major objective is to enable searching of the Protein Data Bank (PDB) for similar sub-pockets, especially in proteins from different structural and biochemical series. Inspection of the ligands bound in these pockets should allow ligand functionality to be identified, thus suggesting novel monomers for use in library synthesis. VA has been developed initially using the ATP binding site in kinases, an important class of protein targets involved in cell signalling and growth regulation. This paper defines the VA procedure and describes matches to the phosphate binding sub-pocket of cyclin-dependent protein kinase 2 that were found by searching a small test database that has also been used to parameterise the methodology.  相似文献   

16.
MOTIVATION: The large-scale comparison of protein-ligand binding sites is problematic, in that measures of structural similarity are difficult to quantify and are not easily understood in terms of statistical similarity that can ultimately be related to structure and function. We present a binding site matching score the Poisson Index (PI) based upon a well-defined statistical model. PI requires only the number of matching atoms between two sites and the size of the two sites-the same information used by the Tanimoto Index (TI), a comparable and widely used measure for molecular similarity. We apply PI and TI to a previously automatically extracted set of binding sites to determine the robustness and usefulness of both scores. RESULTS: We found that PI outperforms TI; moreover, site similarity is poorly defined for TI at values around the 99.5% confidence level for which PI is well defined. A difference map at this confidence level shows that PI gives much more meaningful information than TI. We show individual examples where TI fails to distinguish either a false or a true site paring in contrast to PI, which performs much better. TI cannot handle large or small sites very well, or the comparison of large and small sites, in contrast to PI that is shown to be much more robust. Despite the difficulty of determining a biological 'ground truth' for binding site similarity we conclude that PI is a suitable measure of binding site similarity and could form the basis for a binding site classification scheme comparable to existing protein domain classification schema.  相似文献   

17.
基于质谱的蛋白质组学快速发展,蛋白质质谱数据也呈指数式增长。寻找速度快、准确度高以及重复性好的鉴定方法是该领域的一项重要任务。谱图库搜索策略直接比较实验谱图与谱图库中的真实谱图,充分利用了谱图中的丰度、非常规碎裂模式和其他的一些特征,使得搜索更加快速和准确,成为蛋白质组学的主流鉴定方法之一。文中介绍基于谱图库的蛋白质组质谱数据鉴定策略,并针对其中两个关键步骤——谱图库构建方法和谱图库搜索方法进行深入介绍,探讨了谱图库策略的进展和挑战。  相似文献   

18.
Introduction  Tandem mass spectrometry (MS/MS) has emerged as a cornerstone of proteomic screens aimed at discovering putative protein biomarkers of disease with potential clinical applications. Systematic validation of lead candidates in large numbers of samples from patient cohorts remains an important challenge. One particularly promising high throughout technique is multiple reaction monitoring (MRM), a targeted form of MS/MS by which precise peptide precursor–product ion combinations, or transitions, are selectively tracked as informative probes. Despite recent progress, however, many important computational and statistical issues remain unresolved. These include the selection of an optimal set of transitions so as to achieve sufficiently high specificity and sensitivity when profiling complex biological specimens, and the corresponding generation of a suitable scoring function to reliably confirm tentative molecular identities based on noisy spectra. Methods  In this study, we investigate various empirical criteria that are helpful to consider when developing and interpreting MRM-style assays based on the similarity between experimental and annotated reference spectra. We also rigorously evaluate and compare the performance of conventional spectral similarity measures, based on only a few pre-selected representative transitions, with a generic scoring metric, termed T corr, wherein a selected product ion profile is used to score spectral comparisons. Conclusions  Our analyses demonstrate that T corr is potentially more suitable and effective for detecting biomarkers in complex biological mixtures than more traditional spectral library searches. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Jian Liu and Johannes A Hewel contributed equally to this study.  相似文献   

19.
In a typical shotgun proteomics experiment, a significant number of high‐quality MS/MS spectra remain “unassigned.” The main focus of this work is to improve our understanding of various sources of unassigned high‐quality spectra. To achieve this, we designed an iterative computational approach for more efficient interrogation of MS/MS data. The method involves multiple stages of database searching with different search parameters, spectral library searching, blind searching for modified peptides, and genomic database searching. The method is applied to a large publicly available shotgun proteomic data set.  相似文献   

20.
Peptide identification by tandem mass spectrometry is the dominant proteomics workflow for protein characterization in complex samples. The peptide fragmentation spectra generated by these workflows exhibit characteristic fragmentation patterns that can be used to identify the peptide. In other fields, where the compounds of interest do not have the convenient linear structure of peptides, fragmentation spectra are identified by comparing new spectra with libraries of identified spectra, an approach called spectral matching. In contrast to sequence-based tandem mass spectrometry search engines used for peptides, spectral matching can make use of the intensities of fragment peaks in library spectra to assess the quality of a match. We evaluate a hidden Markov model approach (HMMatch) to spectral matching, in which many examples of a peptide's fragmentation spectrum are summarized in a generative probabilistic model that captures the consensus and variation of each peak's intensity. We demonstrate that HMMatch has good specificity and superior sensitivity, compared to sequence database search engines such as X!Tandem. HMMatch achieves good results from relatively few training spectra, is fast to train, and can evaluate many spectra per second. A statistical significance model permits HMMatch scores to be compared with each other, and with other peptide identification tools, on a unified scale. HMMatch shows a similar degree of concordance with X!Tandem, Mascot, and NIST's MS Search, as they do with each other, suggesting that each tool can assign peptides to spectra that the others miss. Finally, we show that it is possible to extrapolate HMMatch models beyond a single peptide's training spectra to the spectra of related peptides, expanding the application of spectral matching techniques beyond the set of peptides previously observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号