首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤中抗生素耐药性的扩散对全球的公共卫生和食品安全造成威胁,严重挑战人类感染类疾病的预防与治疗.噬菌体介导的抗生素抗性基因(ARGs)的水平转移是环境中抗性基因扩散的重要机制.但是,噬菌体对土壤环境中抗性基因传播的贡献尚未见报道.本文综述了土壤环境中噬菌体的分布特征与影响因子,总结了纯化和富集土壤噬菌体的主要研究方法;...  相似文献   

2.
土壤农药污染和细菌耐药性是环境领域研究的热点问题。近年来,越来越多的研究表明土壤农药污染与细菌农药-抗生素交叉抗性的形成有关。本文依据近年来国内外研究进展,阐述了国内外土壤中农药(杀虫剂、除草剂和杀菌剂)的污染现状,并介绍了细菌对农药的降解及抗性、细菌对抗生素的抗性以及农药-抗生素交叉抗性等问题。最后,对未来有关农药-抗生素交叉抗性的研究重点进行了展望。  相似文献   

3.
为揭示沈阳地区蔬菜土壤中典型抗生素抗性基因(ARGs)与可移动元件(MGEs)的分布特征,利用高通量荧光定量PCR技术,对沈阳市十里河、东陵路和新民屯蔬菜种植土壤中四环素类(tet)、磺胺类(sul)、氯霉素类(cml)、氨基糖苷类(aac)等ARGs以及转座子(tnp)和整合子(int)等MGEs的残留种类、数量和丰...  相似文献   

4.
土壤中抗生素抗性基因(ARGs)污染是全世界面临的重大环境和健康挑战,开发有效技术以减少其负面影响对维护土壤和人类健康至关重要。生物炭具有高碳含量、大表面积、良好的吸附性能和经济优势,可能是一种非常合适的阻控材料。其对ARGs的阻控作用可能归因于以下3种机制: 1) 吸附某些污染物,如抗生素和重金属,减弱ARGs的共选择性压力;2) 通过改变土壤理化特性影响微生物种群结构,从而限制细菌之间ARGs的水平转移;3) 通过吸附或破坏质粒、转座子、整合子等水平转移载体,直接减弱基因水平转移能力。但生物炭对ARGs的阻控效果取决于生物炭的物料来源、热解工艺和添加水平等。此外,生物炭的老化可能会降低其阻控ARGs的效果。生物炭的内源性污染物,如多环芳烃和重金属,也可能导致环境中特定抗生素抗性细菌的富集或诱导水平基因转移。在后续研究中,应根据土壤环境选择合适的生物炭种类,并采取生物炭老化控制措施,以进一步提高生物炭对ARGs的阻控作用。  相似文献   

5.
【目的】分析有机、化肥和野生折耳根表面的附生细菌群落结构和抗生素抗性基因(ARGs),揭示细菌群落结构与ARGs相互关系。【方法】高通量测定16SrRNAV3-V4可变区序列分析样品表面附生细菌群落结构;PCR和qPCR扩增29种ARGs基因分析样品表面ARGs污染情况;冗余分析(RDA)探讨细菌群落结构与ARGs的相互关系。【结果】折耳根表面检测到35个属的细菌,其中有机折耳根表面附生细菌多样性低于化肥和野生折耳根(P0.05);29种被检的ARGs中,有14种在折耳根中被检出,其中有机折耳根含有全部被检出的ARGs,化肥和野生折耳根则含有部分被检出的ARGs。折耳根表面ARGs污染的多样性和丰度显著受到样品表面的菌群结构影响,其中Lactococcus、 Escherichia、Fluviicola、Enterococcus、Sanguibacter和Acidovorax是影响ARGs最主要的菌群。【结论】有机种植极大地改变了折耳根表面附生细菌的群落结构,增加了ARGs的多样性和丰度,对有机折耳根的食品安全带来了潜在威胁。因此,有必要将ARGs污染监测纳入到有机折耳根的食品安全考核范围内。  相似文献   

6.
抗生素及其抗性基因可随动物粪肥施用进入农田土壤中,进而给土壤-蔬菜系统带来潜在的生态风险。为分析抗生素抗性基因在土壤及蔬菜系统中的分布特征,本研究以四环素类抗性基因(TRGs)为对象,通过温室盆栽试验研究了典型TRGs在3种可生食蔬菜(小白菜、生菜和樱桃萝卜)中的分布特征,探讨了蔬菜根系扰动对其根际土壤中TRGs多样性和丰度的影响,并分析了TRGs在蔬菜和土壤中分布特征的相关性。结果表明,受试蔬菜体内及根际土壤中均检测到TRGs和可移动元件(MGEs),检出种类和丰度依次为根际土壤>蔬菜根部>茎叶部。蔬菜根部检出的TRGs与MGEs种类和丰度高于茎叶内,其中tetD-01、tetG-01、tetT、tet(32)、IS613、tnpA-04、intI-1(clinic)检出率和丰度尤为突出。樱桃萝卜根际土壤的TRGs及MGEs比生菜、小白菜富集量大,且土壤和蔬菜系统中部分TRGs的分布与MGEs呈显著正相关。研究结果可为揭示TRGs在土壤-蔬菜系统中存在的安全风险提供数据支持。  相似文献   

7.
环境中抗生素抗性基因的水平传播扩散   总被引:1,自引:0,他引:1  
抗生素抗性基因作为一类新型环境污染物,其在不同环境介质中的传播扩散可能比抗生素本身的环境危害更大,其中,水平基因转移是抗生素抗性基因传播的重要方式,是造成抗性基因环境污染日益严重的原因之一.本文系统阐述了抗生素抗性基因在环境中发生水平转移的主要分子传播元件及其影响因素,这对于正确揭示抗性基因的分子传播机制具有重要意义.结合多重抗药性的传播扩散机制,探讨了行之有效的遏制抗生素抗性基因传播扩散的方法和途径,并针对目前的污染现状,对今后有关抗生素抗性基因水平转移的研究重点进行了展望.  相似文献   

8.
[目的] 南极洲不同地区环境极端多样,且受人类活动影响不一。本研究旨在探究南极不同纬度地区土壤抗生素抗性基因(ARGs)的分布特征与迁移机制。[方法] 下载南极不同纬度地区及加拿大阿尔伯特地区养殖场附近土壤宏基因组数据集,利用MetaWRAP进行组装,使用CARD、PlasFlow和ICEberg数据库对ARGs与可移动遗传元件(MGEs)进行注释。[结果] 在南极不同纬度地区土壤中,优势菌门为变形菌门、放线菌门、拟杆菌门和厚壁菌门。共注释出25类406种ARGs,以多重耐药类、四环素类及氨基糖苷类抗生素抗性基因为主。NMDS分析结果表明,南极不同纬度地区与养殖场附近土壤中ARGs的分布特征显著不同(ANISOM,P=0.001)。南极高纬度地区ARGs占总基因数的比例为0.28%,显著低于低纬度地区(1.93%,P<0.01)。不同抗生素类型的ARGs呈现不同的区域分布模式,其中硝基咪唑类、氨基糖苷类、糖肽类与大环内酯类ARGs主要分布在南极高纬度地区,四环素类与磺胺类ARGs主要分布在南极低纬度地区(P<0.05)。南极土壤中ARGs的迁移研究表明,质粒携带的ARGs占检测到的ARGs的17%。同时,共发现163个整合与接合元件(ICEs)可携带多抗耐药类、肽类和四环素类等14类ARGs。这些携带ARGs的ICEs主要分布于α-、β-与γ-变形菌纲中。[结论] 南极高纬度与南极低纬度地区土壤中ARGs的分布存在差异性,质粒与ICEs共同介导ARGs的迁移。本研究为进一步了解抗生素时代之前的原始抗性组提供数据基础。  相似文献   

9.
土壤中抗性基因的产生,扩散传播以及消减的研究进展   总被引:1,自引:0,他引:1  
近年来,土壤中残留的大量抗生素不可避免的导致耐药微生物和抗性基因的增加和扩散,引起一系列土壤污染和生态风险。作为一类新兴污染物,抗性基因的污染水平已经远远超出我们的预想,因此对土壤中抗性基因的分布水平、扩散传播及消减技术的研究刻不容缓。本文对国内外土壤中抗生素和抗性基因残留水平进行了总结分析,探讨了土壤中抗性基因的产生、扩散的内在动力和机制。同时,分析了土壤中抗性基因分布和扩散的影响因素,如:抗生素残留水平,土壤理化性质和环境条件等。在此基础上,探讨了土壤抗性基因阻隔和消减技术,包括传统降解方法:高温,光照催化、微波-H2O2-微生物联合处理技术等,并提出新型消解技术:取代活性基团、靶位修饰以及改变外排泵的通透性等。讨论未来在控制抗性基因生态风险,降低其在土壤中的丰度,有效阻截技术的发展趋势。  相似文献   

10.
为了解分枝杆菌噬菌体在自然界的生存环境,深入研究噬菌体在微生态环境中的作用奠定基础。以含柠檬酸和磷酸氢二钠的溶液为提取剂,从50份不同性质土壤中分离、纯化分枝杆菌噬菌体,电镜观察初步确定其分类;统计分析土壤类型、酸碱度、含水量、阳离子交换量、有机碳含量对噬菌体分离率的影响。共分离纯化到13株尾病毒目肌尾病毒科的分枝杆菌噬菌体。3种类型土壤的分枝杆菌噬菌体分离率分别为暗棕壤(41.2%)>黄棕壤(25.0%)>褐土(16.7%);土壤pH值、含水量、阳离子交换量对分离率影响呈规律性:pH值和含水量分别在7.45—7.95和13.7%—21.7%时分离率最高;当阳离子交换量为20.8—28.6 cmol/kg时,分离率随之升高而升高;未见有机碳含量对分离率的影响有明显规律。  相似文献   

11.
抗生素抗性基因(antibiotic resistance genes, ARGs)作为一种新型环境污染物近年来受到广泛关注。目前关于抗生素的环境污染研究主要集中于医疗和养殖业,对植物保护领域的农用抗生素环境污染研究很少。武夷菌素是一种环保、高效、广谱的农用抗生素,在农业生产中得到了广泛应用,对农作物真菌性病害具有良好的防治效果。本研究分别选取了未使用武夷菌素和使用武夷菌素的蔬菜大棚中的土壤,通过高通量测序分析了土壤中微生物群落结构,发现两份土壤中主要的微生物群落种类没有发生明显改变,但是优势菌群的丰度有显著差异。通过荧光定量PCR技术,对18个典型的抗生素抗性基因进行了检测,发现aadA、aac(3)-Ⅱ、strA、strB、aacA4、tetX、sulI和intI1 8个基因在两份土壤中的绝对含量和丰度均有显著差异,表明武夷菌素对土壤中微生物的群落结构及抗生素抗性基因的绝对含量和丰度均会造成一定影响。本研究为评估武夷菌素的环境安全性及合理正确使用武夷菌素提供了理论依据,也为其它农用抗生素的相关研究提供了借鉴。  相似文献   

12.
抗性基因在环境中的垂直及水平传播,致使抗生素耐药性成为危及人类和动物生命健康的全球性问题。动物源食品是中国美食不可或缺之物,而由于抗生素超用与滥用等行为让公众不得不关注动物源食品源头——养殖场的抗生素抗性基因环境安全问题。本文综述了养殖环境中抗生素抗性基因的研究进展,分析了养殖环境中抗生素抗性基因产生原因、传播途径以及影响因素,介绍了现有风险评估方法和控制技术,并对今后养殖环境中抗生素抗性基因的控制策略、技术及研究方向提出了建议。  相似文献   

13.
环境中抗生素抗性基因与I型整合子的研究进展   总被引:3,自引:1,他引:3  
抗生素抗性基因(Antibiotic resistance genes,ARGs)作为一种新型污染物在不同环境中广泛分布、来源复杂,对生态环境和人类健康造成了很大的潜在风险。同时,Ⅰ型整合子(Int Ⅰ)介导的ARGs水平转移是环境中微生物产生耐药性的重要途径,Ⅰ型整合子整合酶基因(intI1)与ARGs丰度在环境中表现出了较高的正相关性,Int Ⅰ可以作为标记物在一定程度上反映ARGs在环境中的迁移转化规律和人类活动影响程度。本文介绍ARGs与Int Ⅰ在环境中的来源与分布,总结Int Ⅰ介导的ARGs迁移转化机制以及相关研究方法,并展望未来的研究发展趋势。  相似文献   

14.
探究新型环境污染物—抗生素抗性基因(ARGs)在校园环境中的分布状况。通过聚合酶链式反应(PCR)对上海某高校使用5年新校区不同区域污水检查井污泥中8种四环素类、4种磺胺类、7种β-内酰胺类、4种链霉素类和5种氯霉素类ARGs进行定性研究,并利用变性梯度凝胶电泳(DGGE)技术分析污泥中细菌群落的多样性。结果显示,校园各区域中共检出19种ARGs,有8种ARGs的检出率大于50%,其中磺胺类抗性基因sulI、sulII的检出率最高,为100%。实验区及餐饮区的ARGs检出种类最多,均为14种,其次为宿舍区(12种),教学区的ARGs检出最少(8种)。通过DGGE分析细菌群落结构,证明该地区的ARGs分布与细菌多样性无明显关系。新校区使用5年但ARGs污染严重,可能是由于人类活动(尤其是科研活动)对ARGs的产生及扩散存在促进作用。此外,细菌群落多样性与ARGs种类的关系表明ARGs在环境中的迁移可能受到除细菌种类之外其他环境因素的影响。  相似文献   

15.
通过培养的方法研究了土霉素暴露和小麦根际抗性细菌的数量、种类、分布特征及土壤酶活性之间的剂量效应关系。结果表明,土霉素暴露下小麦根际单一抗生素抗性细菌数量和抗土霉素—链霉素双重抗性细菌数都明显增加,且与暴露剂量呈正效应关系;同时,土壤磷酸酶、脱氢酶活性下降,但与土霉素的剂量效应关系不明显。从土霉素暴露的土壤中分离到50株抗性细菌,经形态观察、RFLP分组和16S rDNA序列测定与分析,将它们聚集在Actinobacteria、Bacilli、Alphaproteobacteria、Gammaproteobacteria 和Sphingobacteria类群。其中放线菌最多(15株),占抗性菌总数的30 %;其次是Bacillus属细菌(9株)和Pseudomonas属细菌(8株),分别占18 %和16 %。同时,具有抗性的人类机会致病菌Pseudomonas、Sphingomonas和Stenotrophomonas属细菌在土霉素暴露的样品中均被分离到,分别占抗性菌株总数的16 %、8 %和4 %。值得注意的是,随着土霉素暴露剂量的增加,小麦根际优势促生菌Bacillus属细菌的抗性检出率逐步降低;但具有抗生素抗性的人类机会致病菌Pseudomonas、Sphingomonas和Stenotrophomonas属细菌的检出率却明显增加,提示可能会进一步增大其机会致病性。  相似文献   

16.
吴楠  杨静慧  张伟玉  杨帆  曾明 《微生物学通报》2016,43(12):2720-2729
抗生素在医疗和畜禽养殖业的大量使用增加了环境中抗生素抗性微生物(ARB)和抗性基因(ARGs)的丰度与多样性,加速了抗生素耐药性在环境中的传播,给人类公共健康造成潜在威胁。但目前对于环境中耐药性的污染现状缺少足够的信息,相关研究方法亟待优化和完善。本文通过综述环境中抗生素耐药性的国内外研究现状,探讨了不同环境(水、土壤、空气等)样品的采集方法以及耐药性的检测方法——传统微生物培养法和分子生物学方法(如定性与定量PCR、DNA杂交及微阵列技术、宏基因组学方法等),旨在为多环境介质中抗生素耐药性的研究提供科学依据和技术支持。  相似文献   

17.
随着集约化畜禽养殖业的不断发展,兽用抗生素的长期使用导致畜禽粪便抗生素抗性基因污染日益严重,对生态环境和人类健康造成严重危害。如何有效消减畜禽粪便中的抗生素抗性基因成为当前研究热点。本文系统总结了畜禽粪便中抗生素抗性基因的产生途径、分布和影响因素,并阐述了好氧堆肥、厌氧消化及其强化工艺消减畜禽粪便抗生素抗性基因的研究进展,根据现有工艺研究存在的问题展望了今后的重点研究方向,为畜禽粪便中抗生素抗性基因的消减提供理论基础和技术支撑。  相似文献   

18.
吉林黑土区不同施肥处理对农田土壤昆虫的影响   总被引:9,自引:0,他引:9  
为研究不同施肥处理与农田土壤昆虫群落之间的关系,对吉林黑土区不同施肥处理对农田土壤昆虫群落的影响进行了研究.在12个处理小区内,即(1)撂荒(不施肥、不耕作、不种植,ABAND)、(2)对照(种植、不施肥,CK)、(3)施氮肥(N)、(4)施氮磷肥(NP)、(5)施氮钾肥(NK)、(6)施磷钾肥(PK)、(7)施氮磷钾化肥(NPK)、(8)施氮磷钾化肥+有机肥处理(有机N 和化肥N 的比例为2:1)(M1NPK)、(9)增加50 %用量化肥配施有机肥(1.5 MNPK)、(10)化肥配施秸秆(SNPK)、(11)玉米、大豆2:1轮作,施肥量同处理8(Rot)、(12)施氮磷钾化肥+有机肥处理(有机N 和化肥N 的比例为1:1)(M2NPK),共采集144个定点土壤样品.通过手捡法和改良干漏斗法(Modified Tullgren )共获得土壤昆虫9922只(未知标本187只),隶属9目48科.调查结果显示,12种施肥小区内,大型土壤昆虫个体数和类群数依次是:ABAND>NP>N>1.5MNPK>Rot.>PK>NK>NPK>M2NPK>CK>M1NPK>SNPK,N>NK>ABAND=1.5MNPK>NP=NPK>PK>CK=Rot.>M2NPK=M1NPK>SNPK;中小型土壤昆虫数依次是ABAND>1.5MNPK>PK>M2NPK>CK>Rot.>NPK>SNPK>NK>NP>N>M1NPK,Rot.>NPK>ABAND=NP=1.5MNPK=PK=NK=M2NPK=CK=M1NPK=SNPK>N.大型土壤昆虫个体数和类群数撂荒中分布最多,中小型土壤昆虫则分别在撂荒和轮作中分布最多.多样性分析表明,1.5MNPK处理中大型农田土壤昆虫组成最丰富,M1NPK处理中小型农田土壤昆虫组成最丰富;CK处理与其他11处理之间群落相似程度最小,Rot.与其他处理之间的群落相似程度较大.Kruskal- Wallis检验法分析表明,施肥对农田土壤昆虫分布影响极显著(X0.05(11)=10.25,p〈0.05),反映出不同施肥对土壤生态系统内部环境,进而对土壤动物群落产生的影响.多元统计分析表明,轮作对土壤昆虫优势类群具有负向作用,而M2NPK则具正向作用.各种施肥对农田土壤昆虫影响不平衡,其中对农田土壤昆虫个体数影响最大,对中小型土壤昆虫均匀性影响最小.  相似文献   

19.
SHI-related sequence(SRS)基因家族通过介导激素变化以调控植物成花及生长发育,并且在适应环境胁迫中起重要调控作用。该研究基于苹果(Malus domestica Borkh.)基因组数据,通过生物信息学手段鉴定苹果SRS基因家族成员,并分析SRS基因家族特点与功能及表达情况。结果表明:(1)苹果MdSRS基因家族共包含11个成员,分别命名为MdSRS1-MdSRS11,不均匀地分布在苹果的9条染色体上。(2)MdSRS蛋白包含229~414个不等的氨基酸残基,等电点分布在6.38~9.36之间;亚细胞定位结果表明,MdSRS蛋白大多分布于细胞膜,在细胞核、叶绿体中也有分布。(3)通过引入拟南芥、水稻、番茄及杨树的SRS基因进行系统发育分析表明,将11个MdSRSs分成5个亚族(A-A),在A4中分布最多。(4)顺式作用元件分析表明,11个MdSRSs启动子上游2 000 bp序列分布有激素、环境适应性和逆境诱导等响应元件。(5)荧光定量PCR结果显示,苹果MdSRS基因家族在盐胁迫和干旱胁迫下总体呈下调表达,在ABA胁迫后大多呈上调表达,是具有很大潜力的抗性候选基因,说明SRS家族对ABA调节等非生物胁迫具有调控作用。研究认为,SRS家族的11个成员均参与了调控干旱、盐及ABA胁迫多种逆境的响应,推测在实际苹果生产中对抵御不良环境具有重要作用。  相似文献   

20.
随着抗生素在医疗卫生和畜牧养殖等领域的大量使用,目前在很多国家和地区的畜禽粪便、土壤和水体等样品中检测出多种抗生素及其抗性基因残留,这类新型污染物给环境和人类健康带来的危害不容忽视.在当前还无法做到抗生素“零排放”的情况下,如何有效控制抗生素及其抗性基因在环境中的污染水平,是降低其生态风险的有效途径之一.生物炭因具有比...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号