首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteropathogenic Escherichia coli (EPEC) adhere to epithelial cells in microcolonies, a pattern termed localized adherence (LA). LA is dependent upon the presence of 50–70MDa plasmids, termed EPEC adherence factor (EAF) plasmids. Expression of an EAF plasm id-encoded type IV fimbria, the bundle-forming pilus (BFP), is associated with the LA phenotype. TnphoA insertions in bfpA, the gene encoding the major structural subunit of the BFP, abolish LA. While bfpA::TnphoA mutants cannot be complemented for LA by plasmids carrying the bfpA gene alone in trans, this work shows that they can be complemented by plasmids carrying the bfpA gene, as well as approximately 10kb of downstream sequence, suggesting that such mutations have polar effects on downstream genes. The identification and characterization of a cluster of 13 genes immediately downstream of bfpA are described. The introduction into a laboratory Escherichia coli strain of a plasmid containing these 14 bfp gene cluster genes, along with pJPN14, a plasmid containing another fragment derived from the EAF plasmid, confers LA ability and BFP biogenesis. However, when a mutation is introduced into the last gene of the bfp cluster, neither LA nor BFP biogenesis is conferred. This work also provides evidence to show that the fragment cloned in pJPN14 encodes a factor(s) which results in increased levels of the pilin protein. Finally, it is shown that expression of the 14 genes in the bfp cluster from an IPTG-inducible promoter, in the absence of pJPN14, is sufficient to reconstitute BFP biogenesis in a laboratory E. cob strain, but is insufficient for LA. This is the first report demonstrating the reconstitution of a type IV pilus in a laboratory E. coli strain with a defined set of genes. The 8FP system should prove to be a useful model for studying the molecular mechanisms of type IV pilus biogenesis.  相似文献   

2.
Enteropathogenic Escherichia coli (EPEC) strains produce a bundle‐forming pilus (BFP) that mediates localized adherence (LA) to intestinal epithelial cells. The major structural subunit of the BFP is bundlin, which is encoded by the bfpA gene located on a large EAF plasmid. The perA gene has been shown to activate genes within the bfp operon. We analyzed perA gene polymorphism among typical (eae‐ and bfpA‐ positive) EPEC strains isolated from healthy and diarrheal persons in Japan (n= 27) and Thailand (n= 26) during the period 1995 to 2007 and compared this with virulence and phenotypic characteristics. Eight genotypes of perA were identified by heteroduplex mobility assay (HMA). The strains isolated in Thailand showed strong autoaggregation and had an intact perA, while most of those isolated in Japan showed weak or no autoaggregation, and had a truncated perA due to frameshift mutation. The degree of autoaggregation was well correlated with adherence to HEp‐2 cells, contact hemolysis and BFP expression. Our results showed that functional deficiency due to frameshift mutation and subsequent nonsense mutation in perA reduced BFP expression in typical EPEC strains isolated in Japan.  相似文献   

3.
4.
5.
6.
bfp, the structural gene of the major repeating bundle-forming pilus (BFP) subunit, was cloned from the enteroadherent factor (EAF) plasmid of enteropathogenic Escherichia coli (EPEC) strain B171 (0111:NM). The bfp open reading frame encoded a 193-amlno-acid protein; comparison of this sequence with the biochemically determined N-terminal amino acid sequence showed that the mature pilin protein is comprised of 180 amino acids, that this sequence is similar to other members of the type IV pilin family, and that it is preceded by a 13-amino-acid signal peptide. Expression of the cloned bfp structural gene in an EPEC strain that had been cured of the EAF plasmid yielded a 21000 dalton protein that co-migrated with the BFP precursor protein. Thus, other genes, probably carried by the EAF plasmid, are required for the maturation of the bfp product and for the production of extracellular pilus filaments. Use of bfp as a hybridization probe showed that homologous sequences are present in all tested EPEC strains and in 13 of 16 tested Salmonelia serotypes. Fifty per cent of these bfp probe-sensitive salmonellae exhibited the localized-adherence (LA) phenotype when incubated with tissue culture cell monolayers, a trait previously associated with EAF plasmid-containing EPEC strains. Scanning electron micrographs of a bfp probe-positive, LA-positive Salmonella dublin strain showed that it grows as adherent colonies on infected monolayers and that within these colonies, BFP-like fibres form inter-bacterial linkages. For EAF plasmid-containing EPEC strains and for severai Salmonella serotypes, BFP expression may lead to the development of adherent colonies on epithelial surfaces early in the infective process.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) forms attaching and effacing lesions in the intestinal mucosa characterized by intimate attachment to the epithelium by means of intimin (an outer membrane adhesin encoded by eae ). EPEC is subgrouped into typical (tEPEC) and atypical (aEPEC); only tEPEC carries the EAF (EPEC adherence factor) plasmid that encodes the bundle-forming pilus (BFP). Characteristically, after 3 h of incubation, tEPEC produces localized adherence (LA) (with compact microcolonies) in HeLa/HEp-2 cells by means of BFP, whereas most aEPEC form looser microcolonies. We have previously identified nine aEPEC strains displaying LA in extended (6 h) assays (LA6). In this study, we analysed the kinetics of LA6 pattern development and the role of intimin in the process. Transmission electron microscopy and confocal laser microscopy showed that the invasive process of strain 1551-2 displays a LA phenotype. An eae -defective mutant of strain 1551-2 prevented the invasion although preserving intense diffused adherence. Sequencing of eae revealed that strain 1551-2 expresses the omicron subtype of intimin. We propose that the LA phenotype of aEPEC strain 1551-2 is mediated by intimin omicron and hypothesize that this strain expresses an additional novel adhesive structure. The present study is the first to report the association of compact microcolony formation and an intense invasive ability in aEPEC.  相似文献   

8.
Gram‐negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σE envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two‐component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram‐negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σE envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σE and Cpx responses in non‐pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σE response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K‐12. Cpx pathway activation resulted in part from overexpression of the bundle‐forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.  相似文献   

9.
10.
11.
Enteropathogenic Escherichia coli (EPEC) is a causative agent of diarrhoea in humans. Localized adherence of EPEC onto intestinal mucosa was reproduced in an in vitro adherence assay with cultured human epithelial cells. We found that the efficiency of EPEC adherence to a mouse-derived colonic epithelial cell line, CMT-93, was remarkably lower than its adherence to human-derived intestinal cell lines, such as Intestine-407 or Caco-2. Although EPEC did adhere to some cell lines derived from non-human species, fixing the cells with formalin to inactivate one or more formalin-sensitive factors allowed us to observe species-specific differences in EPEC adherence. In contrast to these results, an EPEC mutant that is defective in bundle-forming pili (BFP) production adhered as efficiently to CMT-93 cells as to Caco-2 cells. Furthermore, Citrobacter rodentium expressing BFP adhered to Caco-2 cells much more efficiently than to CMT-93 cells. Finally, a purified BfpA-His6 fusion protein showed higher affinity for Caco-2 cells than for CMT-93 cells, and inhibited EPEC adherence. Following BFP-mediated adherence, secretion of EspB from adherent bacteria and reorganization of F-actin in the host cells was observed. EPEC adhering to CMT-93 cells induced far less secretion of EspB, or reorganization of F-actin in the host CMT-93 cells, than did EPEC adhering to Caco-2 cells. These results indicated that BFP plays an important role in the cell-type-dependent adherence of EPEC and in the progression to the later steps in EPEC adherence.  相似文献   

12.
Synthetic N -acetyllactosamine (LacNAc) glycoside sequences coupled to BSA competitively inhibit enteropathogenic Escherichia coli (EPEC) localized adherence (LA) to human intestinal biopsy specimens and tissue culture cell monolayers. The LacNAc-specific adhesin appears to be associated with the bundle-forming pili (BFP) expressed by EPEC during the early stages of colonization. Herein, we report that recombinant bundlin inhibits EPEC LA to HEp-2 cells and binds to HEp-2 cells. Recombinant bundlin also binds, with millimolar association constants ( K assoc), to synthetic LacNAc-Benzene and LacNAc-O(CH2)8CONH2 glycosides as assessed in the gas phase by nanoelectrospray ionization mass spectrometry. Furthermore, LacNAc-BSA inhibits LA only of EPEC strains that express α bundlin alleles, suggesting putative locations for the LacNAc-binding pocket in the α bundlin monomer. Collectively, these results suggest that α bundlin possesses lectin-like properties that are responsible for LacNAc-specific initial adherence of α bundlin-expressing EPEC strains to host intestinal epithelial cells.  相似文献   

13.
Enteropathogenic E. coli (EPEC) is a common cause of diarrhea in children in developing countries. After adhering to intestinal cells, EPEC secretes effector proteins into host cells, causing cell damage and eventually death. We previously showed that EPEC infection triggers the release of ATP from host cells and that ATP is broken down to ADP, AMP, and adenosine. Adenosine produced from the breakdown of extracellular ATP triggers fluid secretion in intestinal monolayers and may be an important mediator of EPEC-induced diarrhea. Here we examined whether adenosine has any effects on EPEC bacteria. Adenosine stimulated EPEC growth in several types of media in vitro . Adenosine also altered the pattern of EPEC adherence to cultured cells from a localized adherence pattern to a more diffuse pattern. Adenosine changed the expression of virulence factors in EPEC, inhibiting the expression of the bundle-forming pilus (BFP) and enhancing expression of the EPEC secreted proteins (Esps). In vivo , experimental manipulations of adenosine levels had strong effects on the outcome of EPEC infection in rabbit intestinal loops. In addition to its previously reported effects on host tissues, adenosine has strong effects on EPEC bacteria, stimulating EPEC growth, altering its adherence pattern, and changing the expression of several important virulence genes. Adenosine, like noradrenaline, is a small, host-derived molecule that is utilized as a signal by EPEC.  相似文献   

14.
Enteropathogenic Escherichia coli (EPEC) express rope-like bundles of filaments, termed bundle-forming pili (BFP) (J. A. Girón, A. S. Y. Ho, and G. K. Schoolnik, Science 254:710-713, 1991). Expression of BFP is associated with localized adherence to HEp-2 cells and the presence of the EPEC adherence factor plasmid. In this study, we describe the identification of rod-like fimbriae and fibrillae expressed simultaneously on the bacterial surface of three prototype EPEC strains. Upon fimbrial extraction from EPEC B171 (O111:NM), three fimbrial subunits with masses of 16.5, 15.5, and 14.7 kDa were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their N-terminal amino acid sequence showed homology with F9 and F7(2) fimbriae of uropathogenic E. coli and F1845 of diffuse-adhering E. coli, respectively. The mixture of fimbrial subunits (called FB171) exhibited mannose-resistant agglutination of human erythrocytes only, and this activity was not inhibited by alpha-D-Gal(1-4)-beta-Gal disaccharide or any other described receptor analogs for P, S, F, M, G, and Dr hemagglutinins of uropathogenic E. coli, which suggests a different receptor specificity. Hemagglutination was inhibited by extracellular matrix glycoproteins, i.e., collagen type IV, laminin, and fibronectin, and to a lesser extent by gangliosides, fetuin, and asialofetuin. Scanning electron microscopic studies performed on clusters of bacteria adhering to HEp-2 cells revealed the presence of structures resembling BFP and rod-like fimbriae linking bacteria to bacteria and bacteria to the eukaryotic cell membrane. We suggest a role of these surface appendages in the interaction of EPEC with eukaryotic cells as well as in the overall pathogenesis of intestinal disease caused by EPEC.  相似文献   

15.

Background  

Enteropathogenic E. coli (EPEC) is a prominent cause of diarrhoea, and is characterised in part by its carriage of a pathogeniCity island: the locus for enterocyte effacement (LEE). EPEC is divided into two subtypes according to the presence of bundle-forming pili (BFP), a fimbrial adhesin that is a virulence determinant of typical EPEC (tEPEC), but is absent from atypical EPEC (aEPEC). Because aEPEC lack BFP, their virulence has been questioned, as they may represent LEE-positive Shiga toxin-producing E. coli (STEC) that have lost the toxin-encoding prophage, or tEPEC that have lost the genes for BFP. To determine if aEPEC isolated from humans in Australia or New Zealand fall into either of these categories, we undertook phylogenetic analysis of 75 aEPEC strains, and compared them with reference strains of EPEC and STEC. We also used PCR and DNA hybridisation to determine if aEPEC carry virulence determinants that could compensate for their lack of BFP.  相似文献   

16.
Enteropathogenic Escherichia coli (EPEC) is a leading cause of infant diarrhoea. EPEC mediates several effects on host epithelial cells, including activation of signal-transduction pathways, cytoskeletal rearrangement along with pedestal and attachingleffacing lesion formation. It has been previously shown that the EPEC eaeB (espB) gene encodes a secreted protein required for signal transduction and adherence, while eaeA encodes intimin, an EPEC membrane protein that mediates intimate adherence and contributes to focusing of cytoskeletal proteins beneath bacteria. DNA-sequence analysis of a region between eaeA and eaeB identified a predicted open reading frame (espA) that matched the amino-terminal sequence of a 25 kDa EPEC secreted protein. A mutant with a non-polar insertion in espA does not secrete this protein, activate epithelial cell signal transduction or cause cytoskeletal rearrangement. These phenotypes were complemented by a cloned espA gene. The espA mutant is also defective for invasion. It is concluded that espA encodes an EPEC secreted protein that is necessary for activating epithelial signal transduction, intimate contact, and formation of attaching and effacing lesions, processes which are central to pathogenesis.  相似文献   

17.
Enteropathogenic Escherichia coli (EPEC) is a significant cause of paediatric diarrhoea worldwide. Virulence requires adherence to intestinal epithelial cells, mediated in part through type IV bundle-forming pili (BFP), and the EPEC protein Tir. Tir is inserted into the enterocyte plasma membrane (PM), resulting in the formation of actin-rich pedestals. Tir is translocated by the type III secretion system (TTSS), through a pore comprised of EPEC proteins inserted into the PM. Here, we demonstrate that in the absence of BFP, EPEC adherence, effector translocation and pedestal formation are dependent on lipid rafts. Lipid raft disruption using methyl-beta-cyclodextrin (MbetaCD) decreased adherence by an EPEC BFP-deficient strain from 85% to 1%. Translocation of the effectors Tir and EspF was blocked by MbetaCD treatment, although the TTSS pore still formed. MbetaCD treatment after Tir delivery decreased pedestal formation by EPEC from 40% to 5%, but not by the related pathogen E. coli O157:H7 which uses a different Tir-based mechanism. In contrast, EPEC expressing the BFP can circumvent the requirement for membrane cholesterol. This suggests that lipid rafts play a role in virulence of this medically important pathogen.  相似文献   

18.
Aims: To investigate the prevalence of traditional and emerging types of enteropathogenic (EPEC) and enterohaemorrhagic Escherichia coli (EHEC) strains in stool samples from children with diarrhoea and to characterize their virulence genes involved in the attaching and effacing (A/E) phenotype. Methods and Results: Serological and PCR‐based methods were used for detection and isolation of EPEC and EHEC strains from 861 stool samples from diarrhoeic children. Agglutination with traditional EPEC and EHEC O‐group‐specific antisera resulted in detection of 38 strains; 26 of these carried virulence factors of EPEC or EHEC. PCR screening for the eae gene resulted in isolation of 97 strains, five carried genes encoding Shiga toxins (stx), one carried the bfpA gene and 91 were atypical EPEC. The 97 EPEC and EHEC strains were divided into 36 O‐serogroups and 21 H‐types, only nine strains belonged to the traditional EPEC O‐groups O26, O55, O86 and O128. In contrast, EPEC serotypes O28:H28, O51:H49, O115:H38 and O127:H40 were found in multiple cases. Subtyping the virulence factors intimin, Tir and Tir‐cytoskeleton coupling effector protein (TccP)/TccP2 resulted in further classification of 93·8% of the 97 strains. Conclusions: Our findings show a clear advantage of the eae‐PCR over the serological detection method for identification of EPEC and EHEC strains from human patients. Significance and Impact of the Study: Molecular detection by the eae‐PCR followed by serotyping and virutyping is useful for monitoring trends in EPEC and EHEC infections and to discover their possible reservoirs.  相似文献   

19.
Genotypic and phenotypic virulence markers of the different categories of diarrheagenic Escherichia coli were investigated in 76 strains of the enteropathogenic E. coli (EPEC) serogroup O125. The most frequent serotype found was O125ac:H21. None of the serotypes behaved as EPEC, i.e. carried the eaeA, bfpA, and EAF DNA sequences simultaneously and presented localized adherence to HeLa cells. All strains of O125ac:H6 were atypical EPEC since they carried eaeA only, and presented an indefinite pattern of adherence. All strains of O125ab:H9, O125ac:H9, O125?:H16, and O125ab:H21 and 79% of the O125ac:H21 strains were enteroaggregative E. coli, since they carried a specific DNA sequence and presented the typical aggregative adherence pattern.  相似文献   

20.
Aims: The aim of study was to develop a colony immunoblot assay to differentiate typical from atypical enteropathogenic Escherichia coli (EPEC) by detection of bundle‐forming pilus (BFP) expression. Methods and Results: Anti‐BFP antiserum was raised in rabbits and its reactivity was confirmed by immunoelectron microscopy and by immunoblotting recognizing bundlin, the major pilus repeating subunit. The bacterial isolates tested in the colony immunoblot assay were grown in different media. Proteins from bacterial isolates were transferred to nitrocellulose membrane after treatment with phosphate buffer containing Triton X‐100, EDTA and sodium chloride salts. When 24 typical EPEC and 96 isolates including, 72 atypical EPEC, 13 Gram‐negative type IV‐expressing strains and 11 enterobacteriaceae were cultivated in Dulbecco’s Modified Eagle’s Medium agar containing fetal bovine serum or in blood agar in the presence of CaCl2, they showed a positivity of 92 and 83%, and specificity of 96 and 97%, respectively. Conclusion: The assay enables reliable identification of BFP‐expressing isolates and contributes to the differentiation of typical and atypical EPEC. Significance and Impact of the Study: The colony immunoblot for BFP detection developed in this study combines the simplicity of an immunoserological assay with the high efficiency of testing a large number of EPEC colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号