首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calcium uptake was examined in sealed plasma membrane vesicles isolated from the plant pathogenic fungus, Phytophthora megasperma f. sp. glycinea. Calcium uptake was ATP-dependent and by the addition of various ionophores in the presence of ATP, it was shown that Ca2+ transport was mediated by a nH+/Ca2+ antiport. Further evidence for this antiport mechanism included Ca2+ uptake driven by an imposed pH gradient and the observation that calcium could dissipate a steady-state pH gradient across the vesicle membrane. Transport mediated by the nH+/Ca2+ antiport was optimal at pH 7.0, and demonstrated saturation kinetics for Ca2+ with a Km of about 7 microM. Glyceollin, a soybean phytoalexin, was found to inhibit Ca2+ transport consistent with its ability to increase H+ conductance. In the presence of glyceollin, calcium leakage from Phytophthora membrane vesicles also increased. This study provides basic information about calcium transport in a plant pathogenic fungus as well as demonstrating a possible mode of action of a phytoalexin.  相似文献   

2.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form.  相似文献   

3.
To ascertain the function of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles, the effect of pH gradient on Ca2+ transport was examined. A transient H+ gradient (inside-acidic) was imposed on K+-loaded sarcoplasmic reticulum vesicles with the aid of K+-H+ exchange driven by nigericin. This proton gradient was dissipated rapidly and concomitantly with ATP-driven Ca2+ transport. Under these conditions, the initial rate of the Ca2+ uptake was increased about 1.5-fold. The stimulation of Ca2+ uptake was completely lost when the pH gradient was cancelled with an uncoupler plus membrane permeable cation before Ca2+ uptake. These results are interpreted in terms of H+ efflux coupled with Ca2+ transport.  相似文献   

4.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

5.
Purified canine cardiac sarcolemmal membrane vesicles exhibit a sodium ion for proton exchange activity (Na+/H+ exchange). Na+/H+ exchange was demonstrated both by measuring rapid 22Na uptake into sarcolemmal vesicles in response to a transmembrane H+ gradient and by following H+ transport in response to a transmembrane Na+ gradient with use of the probe acridine orange. Maximal 22Na uptake into the sarcolemmal vesicles (with starting intravesicular pH = 6 and extravesicular pH = 8) was approximately 20 nmol/mg protein. The extravesicular Km of the Na+/H+ exchange activity for Na+ was determined to be between 2 and 4 mM (intravesicular pH = 5.9, extravesicular pH = 7.9), as assessed by measuring the concentration dependence of the 22Na uptake rate and the ability of extravesicular Na+ to collapse an imposed H+ gradient. All results suggested that Na+/H+ exchange was reversible and tightly coupled. The Na+/H+ exchange activity was assayed in membrane subfractions and found most concentrated in highly purified cardiac sarcolemmal vesicles and was absent from free and junctional sarcoplasmic reticulum vesicles. 22Na uptake into sarcolemmal vesicles mediated by Na+/H+ exchange was dependent on extravesicular pH, having an optimum around pH 9 (initial internal pH = 6). Although the Na+/H+ exchange activity was not inhibited by tetrodotoxin or digitoxin, it was inhibited by quinidine, quinacrine, amiloride, and several amiloride derivatives. The relative potencies of the various inhibitors tested were found to be: quinacrine greater than quinidine = ethylisopropylamiloride greater than methylisopropylamiloride greater than dimethylamiloride greater than amiloride. The Na+/H+ exchange activity identified in purified cardiac sarcolemmal vesicles appears to be qualitatively similar to Na+/H+ exchange activities recently described in intact cell systems. Isolated cardiac sarcolemmal vesicles should prove a useful model system for the study of Na+/H+ exchange regulation in myocardial tissue.  相似文献   

6.
A Na+/H+ antiporter coded by the nhaA (ant) gene of Escherichia coli has been overproduced and purified. The amino-terminal sequence of the protein has been determined and shown to correlate with initiation at a GUG codon, 75 bases upstream from the previously suggested AUG initiation codon. The purified protein, when reconstituted into proteoliposomes, has Na+/H+ antiport activity. It can mediate sodium uptake when a transmembrane pH gradient is applied. Downhill sodium efflux is shown to be highly dependent on pH and is accelerated by a transmembrane pH gradient. An imposed membrane potential negative inside accelerates Na+ efflux at all pH values tested. These findings suggest that the antiporter is electrogenic both at acid and alkaline pH. The activation at alkaline pH values (2000-fold increase) is consistent with the proposed role of the antiporter in regulation of internal pH at the alkaline pH range.  相似文献   

7.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. The vesicle preparation contained high, digitalis-sensitive (Na+ + K+)-ATPase activities indicating its origin from the basolateral portion of plasma membrane. The operation of a Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

8.
Ca2+ was accumulated in inside-out membrane vesicles of Bacillus subtilis when NADH was used as an energy source. A delta pH (acid interior) could also drive Ca2+ accumulation in the membrane vesicles and the accumulation was inhibited by carbonylcyanide p-trifluoromethoxyphenylhydrazone and nigericin plus K+. These results indicate the presence of a Ca2+/H+ antiporter (exchanger) in this organism. The antiporter was isolated and purified to homogeneity from the membrane proteins by chromatography on hydroxyapatite, diethylaminoethyl(DEAE)-Toyopearl 650 M and butyl-Toyopearl 650 M. The purified antiporter has a molecular mass of about 45 000 daltons and an isoelectric point of 5.0. The fluorescence quenching of a cyanine dye (3,3'-dipropylthiodicarbocyanine iodide [diS-C3-(5)] during Ca2+ accumulation in proteoliposomes by the purified antiporter showed the generation of a membrane potential (interior negative) suggesting a H+/Ca2+ stoichiometry above 2 in the transport. This was also supported by the result that the K+-diffusion potential, interior positive, stimulated the Ca2+ uptake in the presence of a delta pH. The apparent Km for Ca2+ of the antiporter was about 40 microM and La3+ inhibited the transport. Amino acid analysis of the purified antiporter indicated the presence of large amounts of glutamic and aspartic acids and small amounts of histidine, lysine and arginine. This is consistent with the low isoelectric point (about 5.0) of the protein.  相似文献   

9.
Na+/H+ antiport was studied in alkaliphilic Bacillus sp. strain C-125, its alkali-sensitive mutant 38154, and a transformant (pALK2) with recovered alkaliphily. The transformed was able to maintain an intracellular pH (pHin) that was lower than that of external milieu and contained an electrogenic Na+/H+ antiporter driven only by delta psi (membrane potential, interior negative). The activity of this delta psi-dependent Na+/H+ antiporter was highly dependent on pHin, increasing with increasing pHin, and was found only in cells grown at alkaline pH. On the other hand, the alkali-sensitive mutant, which had lost the ability to grow above pH 9.5, lacked the delta psi-dependent Na+/H+ antiporter and showed defective regulation of pHin at the alkaline pH range. However, this mutant, like the parent strain, still required sodium ions for growth and for an amino acid transport system. Moreover, another Na+/H+ antiporter, driven by the imposed delta pH (pHin > extracellular pHout), was active in this mutant strain, showing that the previously reported delta pH-dependent antiport activity is probably separate from delta psi-dependent antiporter activity. The delta pH-dependent Na+/H+ antiporter was found in cells grown at either pH 7 or pH 9. This latter antiporter was reconstituted into liposomes by using a dilution method. When a transmembrane pH gradient was applied, downhill sodium efflux was accelerated, showing that the antiporter can be reconstituted into liposomes and still retain its activity.  相似文献   

10.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

11.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

12.
Electroneutral efflux of Ca2+ from liver mitochondria.   总被引:1,自引:1,他引:0       下载免费PDF全文
Respiring liver mitochondria were allowed to export Ca2+ on the endogenous Ca2+/nH+ antiporter in the presence of Ruthenium Red (to inhibit uptake on the Ca2+ uniporter) until a steady state was reached. Addition of sufficient of the ionophore A23187 (which catalyses Ca2+/2H+ exchange) to bring the Ca2+ and H+ gradients into equilibrium did not alter the steady state. Thermodynamic analysis showed that if a Ca2+/nH+ exchange with any value of n other than 2 was at equilibrium, addition of A23187 would have caused an easily measurable change in extramitochondrial free [Ca2+]. Therefore, the endogenous carrier of liver mitochondria catalyses electroneutral Ca2+/2H+ antiport.  相似文献   

13.
To investigate the inhibitory effect of trans potassium on the Cl-/H+ symporter activity of brush-border membrane vesicles from guinea pig ileum, we measured both 36Cl uptake and, by the pyranine fluorescence method, proton fluxes, in the presence of appropriate H+ and K+ gradients. In the absence of valinomycin, a time-dependent inhibitory effect of chloride uptake by trans K+ was demonstrated. This inhibition was independent of the presence or absence of any K+ gradient. Electrical effects cannot be involved to explain these inhibitions because the intrinsic permeability of these vesicles to Cl- and K+ is negligibly small. Rather, our results show that, in the absence of valinomycin, the inhibitory effect of intravesicular K+ involves an acceleration of the rate of dissipation of the proton gradient through an electroneutral exchange of trans K+ for cis H+, catalyzed by the K+/H+ antiporter also present in these membranes. Valinomycin can further accelerate the rate of pH gradient dissipation by facilitating an electrically-coupled exchange between K+ and H+. To evaluate the apparent rate of pH-dissipating, downhill proton influx, we measured chloride uptake by vesicles preincubated in the presence of alkaline-inside pH gradients (pHout/pHin = 5.0/7.5), charged or not with K+. In the absence of intravesicular K+, proton influx exhibited monoexponential kinetics with a time constant k = 11 s-1. Presence of 100 mM K+ within the vesicles significantly increased the rate of pH gradient dissipation which, furthermore, became bi-exponential and revealed the appearance of an additional, faster proton influx component with k = 71 s-1. This new component we interpret as representing the sum of the electroneutral and the electrically-coupled exchange of trans K+ for cis H+, mentioned above. Finally, by using the pH-sensitive fluorophore, pyranine, we demonstrate that, independent of the absence or presence of a pH gradient, either vesicle acidification or alkalinisation can be generated by adding, respectively, Cl- or K+ to the extravesicular medium. Such results confirm the independent existence of both Cl-/H+ symporter and K+/H+ antiporter activities in our vesicle preparations, the relative activity of the former being larger under the conditions of the present experiments. The possible interplay of these two proton-transfer mechanisms in the regulation of the intracellular pH is discussed.  相似文献   

14.
It is well accepted that the mitochondrial K+/H+ antiporter is regulated by matrix Mg2+; however, this is not the only factor controlling its activity. The precise conditions used to deplete divalent cations have profound effects on the subsequent activity of the antiporter in a KOAc assay medium. Examination of the proton fluxes during both pretreatment and subsequent assay of K+/H+ antiport reveals that differences in K+/H+ antiport activity correlate very well with differences in matrix pH. Thus, inhibition of the K+/H+ antiporter following depletion of Mg2+ appears to result from inhibition by matrix protons. To test this hypothesis, we have examined the effect of modulating matrix pH in three different ways on the activity of the K+/H+ antiporter: 1) lowering the pH of the K+ pretreatment medium to 6.7 leads to inactivation of the K+/H+ antiporter; 2) adding NH4+ to the assay medium eliminates the lag in activity induced by depleting Mg2+ in a pretreatment medium containing NH4+; 3) permitting mitochondria to respire in a tetraethylammonium(+)-containing pretreatment medium activates the K+/H+ antiporter. Each one of these procedures leads to a change in matrix pH and an effect on K+/H+ antiport which appears to require regulation of the K+/H+ antiporter by matrix protons. This finding is not only physiologically significant but also provides a useful definition of conditions required for unmasking the K+/H+ antiporter in a reproducible manner.  相似文献   

15.
A mutant of Escherichia coli with defective Na+/H+ antiporter was isolated. The rationale for its isolation was that cells possessing defective Na+/H+ antiporter, which is essential for establishment of a Na+ gradient, could not grow with a carbon source that was taken up with Na+. The mutant had no appreciable Na+/H+ antiporter activity, but its K+/H+ antiporter and Ca2+/H+ antiporter activities were normal. Judging from the reversion frequency, the defect seems to be due to a single mutation. The mutant could not grow at alkaline pH. Therefore, the Na+/H+ antiporter, but not the K+/H+ antiporter or the Ca2+/H+ antiporter, seems to be responsible for pH regulation in alkaline medium. This mutant will be useful for cloning the Na+/H+ antiporter gene and for detection of Na+-substrate cotransport systems.  相似文献   

16.
Alkalophilic Bacillus sp. strain C-59 could grow well on an alkaline medium containing K2CO3, as well as Na2CO3, but did not grow on K+-depleted medium. Right-side-out membrane vesicles, energized in the absence of Na+, however, could not take up [14C]methylamine actively, while vesicles equilibrated with 10 mM NaCl actively took up [14C]methylamine. The uptake of [14C]serine was also stimulated by the addition of Na+, and the imposition of a sodium gradient caused transient uptake. These results indicated that an Na+/H+ antiporter was involved in pH homeostasis and generation of an electrochemical sodium gradient in strain C-59 even though a growth requirement for Na+ was not evident. The efflux of 22Na+ from 22Na+-loaded vesicles was more rapid at pH 9.5 than at pH 7 in the presence of an electron donor. On the other hand, vesicles at pH 7 showed more rapid efflux than at pH 9.5 when the antiporter was energized by a valinomycin-mediated K+ diffusion potential (inside negative).  相似文献   

17.
Ca2+ was accumulated by right-side-out membrane vesicles of Bacillus subtilis following imposition of a diffusion potential, inside-negative, owing to K+-efflux via valinomycin. Uptake was dependent on the magnitude of the membrane potential. This voltage-dependent Ca2+ uptake was inhibited by Ca2+ channel blockers such as nitrendipine, verapamil and LaCl3, and was competitively inhibited by Ba2+ and Sr2+. The system showed saturation kinetics with an apparent Km for Ca2+ of about 250 microM. Proteins responsible for the voltage-dependent Ca2+ uptake were partially purified by preparative isoelectric focusing in a Sepharose bed. A fraction at pH 5.28-5.33 contained the activity. The characteristics of Ca2+ uptake in reconstituted proteoliposomes were the same as those in membrane vesicles (sensitive to Ca2+ channel blockers; inhibited by Ba2+ and Sr2+). In addition, uptake was not influenced by a pH gradient imposed on the vesicles. The apparent Km for Ca2+ in the reconstituted system was about 260 microM. The specific activity was increased about 50-fold by purification with isoelectric focusing.  相似文献   

18.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

19.
The tumor promoter 12-0-tetradecanoyl phorbol-13-acetate (TPA) stimulates hexose uptake into rat thymocytes. This study explores two possible messengers of this stimulation: changes in cytosolic [Ca2+], and activation of the Na+/H+ antiport. The cytosolic level of Ca2+, determined by the fluorescence of quin-2, was elevated by TPA, and this rise required extracellular Ca2+. In contrast, stimulation of hexose uptake was still observed in Ca2+ -free media even when cytoplasmic [Ca2+] was buffered with quin-2. TPA also raised the cytoplasmic pH, presumably through activation of the Na+/H+ exchange. However, replacement of extracellular Na+ by N-methylglucamine+ or choline+ which prevents the cytoplasmic alkanization did not prevent stimulation of hexose uptake by TPA. Moreover, amiloride, at concentrations that inhibit Na+/H+ exchange in these cells, did not interfere with stimulation of hexose uptake by TPA. In conclusion, stimulation of hexose uptake by phorbol ester in rat thymocytes does not appear to be mediated by changes in cytosolic free Ca2+ or in the activity of the Na+/H+ antiport.  相似文献   

20.
Plasma membrane vesicles from a glucose-responsive insulinoma exhibited properties consistent with the presence of a membrane Na+/Ca2+ exchange. The exchange was rapid, reversible, and was dependent on the external Ca2+ concentration (Km = 4.1 +/- 1.1 microM). External Na+ inhibited the uptake in a dose-dependent manner (IC50 = 15 mM). Dissipation of the Na+ gradient by 10 microM monensin decreased Na+/Ca2+ exchange from 0.74 +/- 0.17 nmoles/mg protein/s to 0.11 +/- 0.05 nmoles/mg protein/s. Exchange was not influenced by veratridine, tetrodotoxin and ouabain, or by modifiers of cAMP. No effect was seen using the calcium channel blockers, nitrendipine or nifedipine. Glucose had no direct effect on Na+/Ca2+ exchange, while glyceraldehyde, glyceraldehyde-3-phosphate and dihydroxyacetone inhibited the exchange. Na+ induced efflux of calcium was seen in Ca2+ loaded vesicles and was half maximal at [Na+] of 11.1 +/- 0.75 mM. Ca2+ efflux was dependent on [Na+], with a Hill coefficient of 2.7 +/- 0.07 indicating that activation of Ca2+ release involves a minimum of three sites. The electrogenicity of this exchange was demonstrated using the lipophilic cation tetraphenylphosphonium [( 3H]-TPP), a membrane potential sensitive probe. [3H]-TPP uptake increased transiently during Na+/Ca2+ exchange indicating that the exchange generated a membrane potential. These results show that Na+/Ca2+ exchange operates in the beta cell and may be an important regulator of intracellular free Ca2+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号