首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EPR spectroscopy in combination with site directed spin labeling (SDSL) has become a valuable tool for structural investigations as well as for kinetic studies on proteins. This method has been especially useful for membrane proteins in yielding structural and functional data. This information is not easily available from other techniques, like, e.g., X-ray crystallography or electron microscopy. In the first part of this two part review, the topology of the sensory rhodopsin II/transducer complex (NpSRII/NpHtrII) derived from EPR constraints is compared to that obtained from X-ray crystallography. In the second part, the helix F movement observed for both sensory rhodopsin and bacteriorhodopsin is evaluated and discussed in order to establish a common mechanism after photoreceptor activation.  相似文献   

2.
Since its debut in the mid 1970s, electron crystallography has been a valuable alternative in the structure determination of biological macromolecules. Its reliance on single-layered or double-layered two-dimensionally ordered arrays and the ability to obtain structural information from small and disordered crystals make this approach particularly useful for the study of membrane proteins in a lipid bilayer environment. Despite its unique advantages, technological hurdles have kept electron crystallography from reaching its full potential. Addressing the issues, recent initiatives developed high-throughput pipelines for crystallization and screening. Adding progress in automating data collection, image analysis and phase extension methods, electron crystallography is poised to raise its profile and may lead the way in exploring the structural biology of macromolecular complexes.  相似文献   

3.
The use of multiple isomorphous replacement in protein electron crystallography for phase determination has been systematically studied only for purple membrane, even though the use of heavy atoms or heavy atom clusters has been used on many occasions in electron microscopy for locating domains or subunits in protein assemblies. The background behind the structure determination of bacteriorhodopsin, the protein component of purple membranes, is summarized and an evaluation of the strengths and weaknesses of using isomorphous replacement in electron crystallography is discussed.  相似文献   

4.
The photon-driven proton translocator bacteriorhodopsin is considered to be the best understood membrane protein so far. It is nowadays regarded as a model system for photosynthesis, ion pumps and seven transmembrane receptors. The profound knowledge came from the applicability of a variety of modern biophysical techniques which have often been further developed with research on bacteriorhodopsin and have delivered major contributions also to other areas. Most prominent examples are electron crystallography, solid-state NMR spectroscopy and time-resolved vibrational spectroscopy. The recently introduced method of crystallising a membrane protein in the lipidic cubic phase led to high-resolution structures of ground state bacteriorhodopsin and some of the photocycle intermediates. This achievement in combination with spectroscopic results will strongly advance our understanding of the functional mechanism of bacteriorhodopsin on the atomic level. We present here the current knowledge on specific aspects of the structural and functional dynamics of the photoreaction of bacteriorhodopsin with a focus on techniques established in our institute.  相似文献   

5.
This review contains recent data on serial femtosecond X-ray crystallography (SFX), based on a femtosecond X-ray free electron laser, as well as on the possibilities of its application for studying photosensitive proteins. Development of this method began rather recently, and it has already shown its effectiveness and some unique advantages over conventional X-ray structural analysis. This technology is especially promising for structural studies of membrane proteins and for kinetic studies. The main principle of the method, the possibility of its application in structural biology, its advantages and disadvantages, as well as its prospects for further development are analyzed in this review. Special attention is given to publications in which the SFX method has been used to study photosensitive proteins.  相似文献   

6.
Three-dimensional structures of only a handful of membrane proteins have been solved, in contrast to the thousands of structures of water-soluble proteins. Difficulties in crystallization have inhibited the determination of the three-dimensional structure of membrane proteins by x-ray crystallography and have spotlighted the critical need for alternative approaches to membrane protein structure. A new approach to the three-dimensional structure of membrane proteins has been developed and tested on the integral membrane protein, bacteriorhodopsin, the crystal structure of which had previously been determined. An overlapping series of 13 peptides, spanning the entire sequence of bacteriorhodopsin, was synthesized, and the structures of these peptides were determined by NMR in dimethylsulfoxide solution. These structures were assembled into a three-dimensional construct by superimposing the overlapping sequences at the ends of each peptide. Onto this construct were written all the distance and angle constraints obtained from the individual solution structures along with a limited number of experimental inter-helical distance constraints, and the construct was subjected to simulated annealing. A three-dimensional structure, determined exclusively by the experimental constraints, emerged that was similar to the crystal structure of this protein. This result suggests an alternative approach to the acquisition of structural information for membrane proteins consisting of helical bundles.  相似文献   

7.
Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography.  相似文献   

8.
We measured the density, expansivity, specific heat at constant pressure, and sound velocity of suspensions of purple membrane from Halobacterium halobium and their constituent buffers. From these quantities we calculated the apparent values for the density, expansivity, adiabatic compressibility, isothermal compressibility, specific heat at constant pressure, and specific heat at constant volume for the purple membrane. These results are discussed with respect to previously reported measurements on globular proteins and lipids. Our data suggest a simple additive model in which the protein and lipid molecules expand and compress independently of each other. However, this simple model seems to fail to describe the specific heat data. Our compressibility data suggest that bacteriorhodopsin in native purple membrane binds less water than many globular proteins in neutral aqueous solution, a finding consistent with the lipid surround of bacteriorhodopsin in purple membrane.  相似文献   

9.
The preponderance of structural data of the purple membrane from X-ray diffraction (XRD), electron crystallography (EC), and atomic force microscopy (AFM) allows us to ask questions about the structure of bacteriorhodopsin itself, as well as about the information derived from the different techniques. The transmembrane helices of bacteriorhodopsin are quite similar in both EC and XRD models. In contrast, the loops at the surfaces of the purple membrane show the highest variability between the atomic models, comparable to the height variance measured by AFM. The excellent agreement of the AFM topographs with the atomic models from XRD builds confidence in the results. Small technical difficulties in EC lead to poorer resolution of the loop structures, although the combination of atomic models with AFM surfaces allows clear interpretation of the extent and flexibility of the loop structures. While XRD remains the premier technique to determine very-high-resolution structures, EC offers a method to determine loop structures unhindered by three-dimensional crystal contacts, and AFM provides information about surface structures and their flexibility under physiological conditions.  相似文献   

10.
Outer membrane proteins are structurally distinct from those that reside in the inner membrane and play important roles in bacterial pathogenicity and human metabolism. X-ray crystallography studies on >40 different outer membrane proteins have revealed that the transmembrane portion of these proteins can be constructed from either β-sheets or less commonly from α-helices. The most common architecture is the β-barrel, which can be formed from either a single anti-parallel sheet, fused at both ends to form a barrel or from multiple peptide chains. Outer membrane proteins exhibit considerable rigidity and stability, making their study through x-ray crystallography particularly tractable. As the number of structures of outer membrane proteins increases a more rational approach to their crystallization can be made. Herein we analyse the crystallization data from 53 outer membrane proteins and compare the results to those obtained for inner membrane proteins. A targeted sparse matrix screen for outer membrane protein crystallization is presented based on the present analysis.  相似文献   

11.
12.
Six different sets of coordinates have been recently published for bacteriorhodopsin, with reported resolutions ranging from 3.5 A to 2. 3 A. Three of these are the result of electron crystallographic investigations of two-dimensional crystals of bacteriorhodopsin, whereas the others are from X-ray crystallographic studies of three-dimensional crystals of bacteriorhodopsin. How similar are these models? Are the structure determinations using X-ray diffraction data more accurate than those determined by electron crystallography? Is any one of these coordinate sets closer to the 'real' structure of bacteriorhodopsin than the others? Does the availability of newer models bring us closer to understanding how bacteriorhodopsin really works? These questions, as well as some related issues, are currently being explored.  相似文献   

13.
Andrews S  Reichow SL  Gonen T 《IUBMB life》2008,60(7):430-436
Aquaporins are a family of ubiquitous membrane proteins that form a pore for the permeation of water. Both electron and X-ray crystallography played major roles in determining the atomic structures of a number of aquaporins. This review focuses on electron crystallography, and its contribution to the field of aquaporin biology. We briefly discuss electron crystallography and the two-dimensional crystallization process. We describe features of aquaporins common to both electron and X-ray crystallographic structures; as well as some structural insights unique to electron crystallography, including aquaporin junction formation and lipid-protein interactions.  相似文献   

14.
Hydrophobic organization: Determination of the structure of the bacterial photosynthetic reaction center, bacterial porins, and bacteriorhodopsin allows a comparison of the basic structural features of integral membrane proteins. Structure parameters of membrane- and water-soluble proteins are surprisingly similar, given the different dielectric environments, except for the polarity of residues on the protein surface. Hydrophobic and electrostatic forces: 1) Intramembrane helix-helix interactions that are sensitive to small structure changes can dictate assembly of membrane proteins, as indicated by reconstitution of bacteriorhodopsin from proteolytic fragments and specific dimer formation of the human erythrocyte sialoglycoprotein glycophorin A. 2) Electrostatic interactions have an important role in determining the trans-membrane orientation of integral membrane proteins of the bacterial inner membrane, as expressed by the "positive-inside" rule for the distribution of basic residues on the cis relative to the trans side of the membrane-spanning alpha-helices. The use of this charge asymmetry rule, in conjunction with a hydrophobicity algorithm for prediction of membrane-spanning domains, allows accurate prediction of the folding patterns of such polypeptides across the membrane. A role of electrostatic interactions in assembly and maintenance of the structure of oligomeric integral membrane protein complexes is also implied by the separation and extrusion from the membrane, at high pH, of the major hydrophobic subunits of the cytochrome b6f complex from the chloroplast thylakoid membrane. It is inferred that the hydrophobic helix-helix interactions between the subunits of this complex, whose function is electron transfer and proton translocation, are relatively weak compared to those in bacteriorhodopsin.  相似文献   

15.
Microsomal glutathione transferase 1 (MGST1) is representative of a superfamily of membrane proteins where different members display distinct or overlapping physiological functions, including detoxication of reactive electrophiles (glutathione transferase), reduction of lipid hydroperoxides (glutathione peroxidase), and production of leukotrienes and prostaglandin E. It follows that members of this superfamily constitute important drug targets regarding asthma, inflammation and the febrile response. Here we propose that this superfamily consists of a new class of membrane proteins built on a common left-handed four-helix bundle motif within the membrane, as determined by electron crystallography of MGST1 at 6 A resolution. Based on the 3D map and biochemical data we discuss a model for the membrane topology. The 3D structure differs significantly from that of soluble glutathione transferases, which display overlapping substrate specificity with MGST1.  相似文献   

16.
Levy D  Chami M  Rigaud JL 《FEBS letters》2001,504(3):187-193
Due to the difficulty to crystallize membrane proteins, there is a considerable interest to intensify research topics aimed at developing new methods of crystallization. In this context, the lipid layer crystallization at the air/water interface, used so far for soluble proteins, has been recently adapted successfully to produce two-dimensional (2D) crystals of membrane proteins, amenable to structural analysis by electron crystallography. Besides to represent a new alternative strategy, this approach gains the advantage to decrease significantly the amount of material needed in incubation trials, thus opening the field of crystallization to those membrane proteins difficult to surexpress and/or purify. The systematic studies that have been performed on different classes of membrane proteins are reviewed and the physico-chemical processes that lead to the production of 2D crystals are addressed. The different drawbacks, advantages and perspectives of this new strategy for providing structural information on membrane proteins are discussed.  相似文献   

17.
A great interest exists in producing and/or improving two-dimensional (2D) crystals of membrane proteins amenable to structural analysis by electron crystallography. Here we report on the use of the detergent n-octyl beta-d-thioglucopyranoside in 2D crystallization trials of membrane proteins with radically different structures including FhuA from the outer membrane of Escherichia coli, light-harvesting complex II from Rubrivivax gelatinosus, and Photosystem I from cyanobacterium Synechococcus sp. We have analyzed by electron microscopy the structures reconstituted after detergent removal from lipid-detergent or lipid-protein-detergent micellar solutions containing either only n-octyl beta-d-thioglucopyranoside or n-octyl beta-d-thioglucopyranoside in combination with other detergents commonly used in membrane protein biochemistry. This allowed the definition of experimental conditions in which the use of n-octyl beta-d-thioglucopyranoside could induce a considerable increase in the size of reconstituted membrane structures, up to several micrometers. An other important feature was that, in addition to reconstitution of membrane proteins into large bilayered structures, this thioglycosylated detergent also was revealed to be efficient in crystallization trials, allowing the proteins to be analyzed in large coherent two-dimensional arrays. Thus, inclusion of n-octyl beta-d-thioglucopyranoside in 2D crystallization trials appears to be a promising method for the production of large and coherent 2D crystals that will be valuable for structural analysis by electron crystallography and atomic force microscopy.  相似文献   

18.
In electron crystallography, membrane protein structure is determined from two-dimensional crystals where the protein is embedded in a membrane. Once large and well-ordered 2D crystals are grown, one of the bottlenecks in electron crystallography is the collection of image data to directly provide experimental phases to high resolution. Here, we describe an approach to bypass this bottleneck, eliminating the need for high-resolution imaging. We use the strengths of electron crystallography in rapidly obtaining accurate experimental phase information from low-resolution images and accurate high-resolution amplitude information from electron diffraction. The low-resolution experimental phases were used for the placement of α helix fragments and extended to high resolution using phases from the fragments. Phases were further improved by density modifications followed by fragment expansion and structure refinement against the high-resolution diffraction data. Using this approach, structures of three membrane proteins were determined rapidly and accurately to atomic resolution without high-resolution image data.  相似文献   

19.
Thermal unfolding experiments on bacteriorhodopsin in mixed phospholipid/detergent micelles were performed. Bacteriorhodopsin was extracted from the purple membrane in a denatured state and then renatured in the micellar system. The purpose of this study was to compare the changes, if any, in the structure and stability of a membrane protein that has folded in a nonnative environment with results obtained on the native system, i.e., the purple membrane. The purple membrane crystalline lattice is an added factor that may influence the structural stability of bacteriorhodopsin. Micelles containing bacteriorhodopsin are uniformly sized disks 105 +/- 13 A in diameter (by electron microscopy) and have an estimated molecular mass of 210 kDa (by gel filtration HPLC). The near-UV CD spectra (which is indicative of tertiary structure) for micellar bacteriorhodopsin and the purple membrane are very similar. In the visible CD region of retinal absorption, the double band seen in the spectrum of the purple membrane is replaced with a broad positive band for micellar bacteriorhodopsin, indicating that in micelles, bacteriorhodopsin is monomeric. The plot of denaturational temperature vs. pH for micellar bacteriorhodopsin is displaced downward on the temperature axis, illustrating the lower thermal stability of micellar bacteriorhodopsin when compared to the purple membrane at the same pH. Even though micellar bacteriorhodopsin is less stable, similar changes in response to pH and temperature are seen in the visible absorption spectra of micellar bacteriorhodopsin and the purple membrane. This demonstrates that changes in the protonation state or temperature have a similar affect on the local environment of the chromophore and the protein conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
《TARGETS》2003,2(1):19-25
G-protein-coupled receptors (GPCRs) are a major opportunity for drug discovery in the post-genomic era. There are thought to be more than 500 therapeutically relevant GPCRs out of a total of over 700 identified to date, although only one, rhodopsin, has been the subject of a full 3D X-ray crystallography study. Two structurally related proteins, bacteriorhodopsin and sensory rhodopsin, which are not GPCRs but are part of the seven-helix membrane receptor family, have also been the subject of X-ray crystallographic studies and have been used in GPCR modeling studies. The significant differences between these rhodopsin structures, the relatively low sequence homology between individual GPCRs, and some difficulties in rationalizing point-mutation data suggests that homology-based molecular modeling alone will not provide the accurate structural information on individual receptors required for ligand design and in silico screening. In the absence of such structural information, several approaches can be used to assist in the discovery of ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号