首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The perennial rhizomatous grass, Miscanthus×giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. ×giganteus must be propagated vegetatively by mechanically divided rhizomes or from micropropagated plantlets. Plant regeneration through somatic embryogenesis is a viable approach to achieve large‐scale production of plantlets in tissue culture. Effect of the callus types, ages and culture methods on the regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. ×giganteus. Shoot‐forming calli having a yellow or white compact callus with light‐green shoot‐like structures showed the highest regeneration frequency. Percentage of shoot‐forming callus induction from immature inflorescence explants was 41% on callus induction medium containing 13.6 μM 2,4‐d and 0.44 μM benzyladenine (BA). The use of a regeneration medium containing 1.3 μM NAA and 22 μM BA was effective at shortening the incubation period required for plantlet regeneration, with 69% of total regenerated plantlets obtained within 1 month of incubation on regeneration medium. Embryogenic‐like callus morphotype could maintain regeneration competency for up to 1 year as suspension cultures. Field grown regenerated plants showed normal phenotypic development with DNA content and plant heights comparable to rhizome propagated plants. Winter survival rates of the regenerated plants planted in 2006 and 2007 at the University of Illinois South Farm, Urbana‐Champaign, Illinois, were 78% and 56%, respectively.  相似文献   

2.
Summary Aiming at the genetic improvement of garlic cultivars, a cell suspension protocol was established which includes the induction of friable callus, establishment of cells in liquid medium, plating, regeneration, and bulb formation. Calluses of various textures from compact to friable and from green to yellowish were obtained by culturing explants excised from inner leaves of garlic bulbs on Marashig-Shoog (MS) medium with 2,4 dichlorophenoxy acetic acid (2,4-D), (1.1 mg/liter [5.0 μM]), picloram (1.2 mg/liter [5.0 μM]), and kinetin (2.1 mg/liter [10 μM]). Friable callus occurred on MS-A contained 2,4-D alone (1.0 mg/liter [4.52 μM]) and this callus was used to develop cell suspension cultures, which were maintained in liquid MS-B medium with a 2,4-D/benzyl adenine (BA) (0.5 mg/liter [2.25 μM]: 0.5 mg/liter [2.22 μM]) ratio. High plating efficiency was obtained on MS-C medium with different naphthalene acetic acid/BA combinations. Regeneration occurred after transfer of the caulogenic mass to MS-C medium containing 10 mg/liter (74.02 μM) and 20 mg/liter (148.04 μM) adenine for 60 days, followed by transfer to adenine-free medium. Plantlets transplanted to soil showed normal phenology. Shoots grown on modified MS medium supplemented with indolylbutryic acid (3.0 mg/liter [14.7 μM]) stimulated bulb formation by 30 days in culture.  相似文献   

3.
Summary Shoot multiplication was induced in cowpea, cv. Georgia-21, from shoot tip explants. Shoot tips, 5 mm long, were isolated from in vitro-grown seedlings and cultured on MS medium containing N6-benzyladenine (BA) at 1, 2.5, or 5 mg/liter (4.4, 11.1, or 22.2 μM) or 6-furfurylaminopurine (kinetin) at 1, 2.5, or 5 mg/liter (4.6, 11.6, or 23.2 μM) combined with 2,4-dichlorophenoxyacetic acid (2,4-D) at 0.01, 0.1, or 0.5 mg/liter (0.05, 0.5, or 2.3 μM) or naphthaleneacetic acid (NAA) at 0.01, 0.1, or 0.5 mg/liter (0.05, 0.5, or 2.7 μM). Cultures were maintained at a 12-h photoperiod (40 μmol·m−2·s−1) and 23 ± 2° C. Treatments with BA induced greater shoot proliferation than those with kinetin. The highest number of shoots was produced on 5 mg (22.2 μM) BA per liter in combination with NAA or 2,4-D at 0.01 mg/liter (0.05 μM). Callus proliferated from the basal ends of shoot pieces in all treatments. The cultures also formed roots in the presence of kinetin, but not on BA-containing medium. To produce whole plants, the shoots were separated and rooted on 0.1 mg (0.5 μM) NAA per liter. Resulting plants grew normally under greenhouse conditions. Shoot tips provide an excellent explant source for cowpea micropropagation and can be used for callus induction.  相似文献   

4.
Summary A viable protocol has been developed for direct and indirect shoot regeneration of Vernonia cinerea. To establish a stable and high-frequency plant regeneration system, leaf and stem explants were tested with different combinations of α-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), and benzylaminopurine (BA). Lateral buds on nodal explants grew into shoots within 2 wk of culture in Murashige and Skoog (MS) basal medium supplemented with 20.9 μM BA. Excision and culture of nodal segments from in vitro-raised shoots on fresh medium with the same concentration of BA facilitated development of more than 15 shoots per node. Similarly leaf, nodal, and internodal explants were cultured on MS basal medium supplemented with different concentrations of BA, NAA, and IAA either alone or in combinations for callus induction and organogenesis. Shoot buds and/or roots were regenerated on callus. Shoot buds formed multiple shoots within 4 wk after incubation in induction medium. Adventitious buds and shoots proliferated when callus was cut into pieces and subcultured on MS basal medium containing 20.9 μM BA and 5.3 μM NAA. This combination proved to be the best medium for enhanced adventitious shoot bud multiplication, generating a maximum of 50 shoots in 4 wk. This medium was also used successfully for shoot proliferation in liquid medium. Root formation was observed from callus induced in medium containing 8.05–13.4 μM NAA. Regenerated shoots exhibited flowering and root formation in MS basal medium without any growth regulators. Plantlets established in the field showed 85% survival and exhibited identical morphological characteristics as the donor plant.  相似文献   

5.
Summary This study investigated factors affecting the production of somatic embryos in Blighia sapida (ackee). Explants obtained from fully expanded leaves or cotyledons of immature zygotic embryos excised from brown (BSCZE) or green seeds (GSCZE) were cultured on Murashige and Skoog medium supplemented with 9, 18 and 36μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4 or 22.1 μM benzylaminopurine (BAP) or 0.2–19.9 μM thidiazuron (TDZ). Leaf explants grown on media supplemented with the different combinations of 2,4-D and BAP formed callus, but they were non-embryogenic, while explants were not responsive on TDZ-supplemented media. GSCZE explants grown in the presence of 2,4-D/BAP combinations of 9/4.4, 18/4.4 or 36/4.4 μM formed non-embryogenic callus profusely, but explants gave rise to organized globular protuberances (GPs) and non-embryogenic callus on media containing TDZ, with the best concentration at 0.4 μM. BSCZE explants grown on TDZ-supplemented media also formed callus, but no GPs were detected. When GPs were cultured on media containing TDZ and abscisic acid they (ABA), gave rise to the highest number of somatic embryos. The medium was also beneficial for the development of somatic embryos from the globular to cotyledonary stage.  相似文献   

6.
Summary A system for the regeneration of spinach (Spinacia oleracea L.) from mature dry seed explants has been established. The response of two commercial spinach cultivars, ‘Grandstand’ and ‘Baker’, was examined. Callus proliferation was most prominent on MS medium supplemented with 9.3 μM of 6-furfurylaminopurine (kinetin) and 3.39 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious shoot formation was observed within 8 wk after callus was transferred onto regeneration medium. Shoot regeneration was best from callus induced on 9.3 μM kinetin and 4.56 μM 2,4-D. The regeneration medium contained 9.3 μM kinetin, 0.045 μM 2,4-D, and 2.89 μM gibberellic acid (GA3). Shoots were rooted on hormone-free medium, and plants grown in a greenhouse showed normal phenotype. This system is beneficial in rapid propagation of spinach plants, particularly when only a limited number of seeds are available.  相似文献   

7.
Summary Protoplasts were isolated from leaves ofBetula platyphylla var.japonica using a 0.6M mannitol solution containing 1% Cellulase Onozuka R-10 and 1% Driselase. The cell division and colony formation were largely enhanced using Murashige and Skoog (1962) liquid medium at half strength (1/2 MS), containing 0.6M mannitol, 0.09M sucrose, and factorial combinations of 0.1–30 μM N-(2-chloro-4-pyridyl)-N′-phenylurea (4-pu) and 0.1–10 μM 1-naphthaleneacetic acid (NAA) or 0.1–30 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The optimal protoplast density was 5–7 × 104/ml. Continuous callus proliferation from protoplasts was achieved by transferring colonies to fresh 1/2 MS agar medium containing 1 μM NAA and 1 μM 4-pu with no mannitol. It appeared that supplementation of the medium with phenylurea type cytokinin, 4-pu gave the successful callus proliferation from the protoplasts ofB. platyphylla.  相似文献   

8.
Summary Basal media, plant growth regulator type and concentration, sucrose, and light were examined for their effects on duckweed (Lemna gibba) frond proliferation, callus induction and growth, and frond regeneration. Murashige and Skoog medium proved best for callus induction and growth, while Schenk and Hildebrandt medium proved best for frond proliferation. The ability of auxin to induce callus was associated with the relative strength of the four auxins tested, with 20 or 50 μM 2,4-dichlorophenoxyacetic acid giving the highest frequency (10%) of fronds producing callus. Auxin combinations did not improve callus induction frequency. Auxin in combination with other plant growth regulators was needed for long-term callus growth; the two superior plant growth regulator combinations were 10 μM naphthaleneacetic acid, 10 μM gibberellic acid, and 2 μM benzyladenine with either 1 or 20 μM 2,4-dichlorophenoxyacetic acid. Three percent sucrose was best for callus induction and growth. Callus induction and growth required light. Callus that proliferated from each frond’s meristematic zone contained a mixture of dedifferentiated and somewhat organized cell masses. Continual callus selection was required to produce mostly dedifferentiated, slow-growing callus cell lines. Frond regeneration occurred on Schenk and Hildebrandt medium without plant growth regulators but was promoted by 1 μM benzyladenine. Callus maintained its ability to regenerate fronds for at least 10 mo. Regenerated fronds showed a slower growth rate than normal fronds and a low percentage of abnormal morphologies that reverted to normal after one or two subcultures.  相似文献   

9.
Summary Tissue culture and plant regeneration protocols for the salt marsh plants Juncus roemerianus Scheele and Juncus gerardi Loisel, were developed. J. roemerianus callus was induced from mature seeds cultured on Murashige and Skoog (MS) medium supplemented with 2.22 μM 6-benzylaminopurine (BA), 5.37 μM α-naphthaleneacetic acid (NAA), 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D), and 50 ml l−1 coconut water (callus induction medium). The callus was subcultured on MS medium containing 2.22 μM BA, 5.37 μM NAA, and 9.05 μM 2,4-D for callus maintenance. Shoot regeneration occurred 2 wk after transferring the callus onto shoot regeneration medium, which consisted of MS medium containing BA or thidiazuron. A high frequency of shoot regeneration was obtained when the medium contained 13.3 μM BA. Regenerated shoots were transferred to MS medium supplemented with 10.7 μM NAA for root production. Rooting did not occur in the shoots regenerated on the thidiazuron-containing media. The callus induction medium for J. roemerianus was also effective in inducing callus of J. gerardi from young inflorescences. The same medium was also used for callus maintenance. Shoot regeneration occurred 10 d after transferring the callus onto MS medium supplemented with 0.44 μM BA and 0.57 μM indole-3-acetic acid. Root regeneration occurred after transferring the shoots onto MS medium plus 0.44 μM BA and 14.8 μM indole-3-butyric acid. The regenerated plants of both J. roemerianus and J. gerardi grew vigorously in potting soil in the greenhouse. J. roemerianus regenerants also grew well in a saltwater-irrigated field plot. Tissue culture-produced plants of J. roemerianus and J. gerardi can be used for planting in created or restored wetlands.  相似文献   

10.
Summary Growth and morphogenesis of plant tissues under in vitro conditions are largely influenced by the composition of the culture media. In this study, effects of different inorganic nutrients (ZnSO4 and CuSO4) on callus induction and plant regeneration of Eleusine coracana in vitro were examined. Primary callus induction without ZnSO4 resulted in improved shoot formation upon transfer of calluses to normal regeneration medium. CuSO4 increased to 5x the normal concentration in the media for primary seed callus induction and plant regeneration resulted in a 4-fold increase in number of regnnerated shoots. For long-term callus cultures, 2x KNO3 or 4x Fe-EDTA could replace the requirement for α-naphthaleneacetic acid in the regeneration medium, while 60 μM ZnSO4 or 0.5 μM CuSO4 was optimal for plant regeneration from callus cultures.  相似文献   

11.
Summary In researching the application of genetic transformation to lily breeding, callus formation from cultured explants and plant regeneration from induced calluses were examined in 33 Lilium genotypes, 21 species, three Asiatic hybrids, two LA hybrids, two Longiflorum hybrids, three Oriental hybrids, and two Trumpet hybrids. Seed, bulb scale, leaf, or filament explants were placed on a medium containing 4.1 μM 4-amino-3,5,6-trichloropicolinic acid (picloram; PIC) and cultured in the dark. After 2 mo., callus formation was observed in 30 genotypes, and a formation frequency of more than 50% was obtained in 24 genotypes. Bulb scale and filament explants showed great ability to form calluses, whereas seeds had poor ability. Most of the induced calluses were yellow and had a nodular appearance. When subcultured onto the same fresh medium, twofold or more increases in callus mass were obtained in 1 mo. for 15 genotypes. Callus lines showing sustained growth 1 yr after the initiation of subculture were examined for their ability to produce shoots on a medium without plant growth regulators (PGRs) and a medium containing 22 μM 6-benzyladenine (BA). Shoot regeneration was observed in all genotypes examined, and a regeneration frequency of over 80% was obtained in 20 genotypes. Initial explants used for callus induction and callus type (nodular or friable) had no effect on shoot regeneration. Most of the regenerated shoots developed into complete plantlets following their transfer to a PGR-free medium.  相似文献   

12.
Summary Curculigo orchioides is an endangered anticarcinogenic herb. It is available only during the monsoon season, which lasts approximately 4 mo. each year. In vitro culture of the plant can ensure its availability throughout the year. Leaf explants of Curculigo orchioides cultured on a Murashige and Skoog (MS) medium without cytokinins produced a limited number of plantlets that originated directly from the cut end of the midrib. 6-Benzyladenine (BA) (0.44–6.66 μM) was needed to produce plantlets from rhizome explants. A higher concentration of BA (2.22–4.44 μM) resulted in nodular callus that when transferred to cytokinin-free medium formed shoots. The shoots were rooted on media supplemented with either (0.54–5.37 μM) of 1-naphthaleneacetic acid (NAA) (0.57–5.71 μM) of indole-3-acetic acid (IAA), or (0.49–4.90 μM) indole-3-butyric acid (IBA). Plantlets were kept in sterile sand for 3–4 d and then transferred to soil.  相似文献   

13.
Hypocotyl explants of Beta vulgaris L. were grown on defined agar media with different combinations of IAA and kinetin at varying concentrations of nitrogen or sucrose. The cultures were kept in light (18 h a day) at 27°C for 5 weeks. Root initiation and callus growth were recorded and the callus tissue was analysed for N and K. Root formation was found to increase with increasing nitrogen concentration (from 5 mM to 23.3 mM) in the medium at 10.0 mg/1 of IAA, whereas no stimulation was found at 0.1 mg/1 of IAA. When raising the sucrose level from 20 g/1 to 100 mg/1 at 10.0 mg/1 of IAA and 1.0 mg/1 of kinetin, root initiation was also stimulated. At a lower kinetin and auxin level, however, no increase was recorded. Callus growth was affected by changes in the nitrogen or sucrose concentration of the culture media. The nitrogen content of the callus tissue increased with rising nitrogen concentration of the media. When raising the sucrose level instead of the nitrogen level, the nitrogen content of the tissue decreased.  相似文献   

14.
Summary The effect of sucrose, jasmonic acid (JA) and darkness on bulb formation of garlic Allium sativum L. cv. Ptujski jesenski was studied in vitro. B5 medium supplemented with 3% sucrose, 5 μM JA and 5 μM 2-isopentenyl adenine (2iP) was used for shoot induction on garlic basal plates. For bulb induction, explants with developed shoots were transferred onto media with 3% or 8% sucrose in the presence or absence of 5 μM JA. Sucrose (8%) significantly increased the percentage of shoots which formed bulbs by 86–90%, bulb diameter and the number of bulbs per basal plate. On medium supplemented with JA, the average number of bulbs per basal plate was 11.5. Growth of explants in the dark was ineffective for stimulating bulb formation. Simultaneous use of JA and sucrose can improve garlic micropropagation via bulb formation, without intermediate callus formation.  相似文献   

15.
Various leaf sections of Gasteria verrucosa Haw. and Haworthia fasciata Haw. were cultured on media to examine the effect of picloram (4-amino 3, 5, 6-trichloropicolinic acid) and 2, 4-D (2, 4-dichlorophenoxy acetic acid) on somatic embryogenesis. Picloram (0.5, 1.0, 2.0, 3.0 mgl-1) outperformed 2, 4-D (0, 1.0, 2.0, 3.0 mgl-1) as the auxin source of both earliness of callus and embryo induction and final yield of embryos produced at both kinetin levels examined (0.25, 1.0 mgl-1). Embryos arose initially as a yellow, compact globular masses from the area just beneath the epidermis in linear pattern parallel with the main axis of the leaf and then developed a heartshaped appearance. Embryo formation was preceded by growth of callus almost crystalline in appearance on the cut surface. Subsequent shoot formation developed from green pigmented loci in crystalline callus derived from embryos. Shoot and root development in Gasteria was induced on a defined medium containing quarter strength MS or B5 salts with no hormonal supplementation.  相似文献   

16.
Summary Embryogenic callus induction and plant regeneration systems have long been established for creeping bentgrass (Agrostis palustris Huds.), but little research has been reported on optimal medium for embryogenic callus induction and plant regeneration in velvet bentgrass (Agrostis canina L.), colonial bentgrass (Agrostis capillaries L.), and annual bluegrass (Poa annua L.). The present study compared 14 callus induction media and eight regeneration media for their efficacies on embryogenic callus induction and plant regeneration in these four species. The embryogenic callus initiation media contained the Murashige and Skoog inorganic salts and vitamins supplemented with 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-anisic acid and 6-benzyladenine. l-Proline or casein hydrolyzate was included in some media to stimulate embryogenic callus formation and plant regeneration. The frequencies of embryogenic callus formation ranged from 0% to 38% and exhibited medium differences within each of the four species. Callus induction media, plant regeneration media, and genotypes affected plant regeneration rates, which varied between 0% and 100%. The embryogenic callus induced on Murashige and Skoog medium supplemented with 500 mgl−1 casein hydrolyzate, 6.63 mg l−1 (30 μM) 3,6-dichloro-anisic acid and 0.5–2.0 mg l−1 (2–9 μM) 6-benzyladenine had much higher regeneration rates than those formed on other callus induction media. Embryogenic callus of annual bluegrass had higher regeneration rates than those of bentgrass species. MSA2D, a media containing 2 mgl−1 (8 μM) 2,4-dichlorophenoxyacetic acid, 100 mgl−1 myo-inositol, and 150 mgl−1 asparagine, was effective in promoting embryogenic callus formation in creeping bentgrass but not in colonial and velvet bentgrasses and annual bluegrass.  相似文献   

17.
Long-term culture establishment and efficient in vitro regeneration protocol for Sansevieria cylindrica Bojer ex Hook was developed using leaf derived callus and nodule culture. Profuse callus induction on leaf discs was achieved on Murashige and Skoog (MS) medium supplemented with 10 μM indole-3-butyric acid (IBA), while a high frequency of nodulation was induced on 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) containing media. Shoot regeneration ability from cultured tissues occurred at varying degrees on all media. Through callus culture a maximum of 17.6 ± 0.14 shoots per culture was formed on medium containing 5μM 6-benzyladenine (BA) and 2 μM α-naphthaleneacetic acid (NAA). Among nodule cultures, the 2,4-D generated nodules were more proliferative and regenerative as compared to 2,4,5-T induced nodules and a maximum of 25 ± 0.16 shoots per culture was produced on a medium containing 5 μM BA plus 1 μM NAA. The regenerated shoots were successfully rooted on a semi-solid half strength MS medium containing 5 μM IBA with an average root number 3.5 ± 0.18 and root length 6.5 ± 0.14 cm. The regenerative ability of callus tissues was steady upto one year, while the nodules retained the totipotency to regenerate on optimal medium even after 3 years of subculturing. The histological sections of nodules confirm the typical anatomy exhibiting the vascular elements in bundles with well demarcated cortex and epidermal covering.  相似文献   

18.
Summary A plant regeneration system from cell suspension cultures was established in an important ornamental crop, Limonium sinuatum Mill. cv. ‘Early Rose’. Friable callus was initially induced from leaf segments of in vitro-cultured seedlings on 0.25% gellan gum-solidified half-strength Murashige and Skoog [1/2MS] medium containing 1.0 mg l−1 (4.14 μM) picloram. These calluses were maintained as cell suspension cultures, which showed high proliferation ability with about 80 times increase in fresh weight during the 2-wk interval of subculture. Shoot regeneration from these cell cultures was achieved by cytokinins, especially zeatin, which was the most effective in producing normal shoots with reduced hyperhydration when used in combination with 0.5% gellan gum. Shoot regeneration ability was different among the cell lines originated from each different seedling. Shoot formation was observed at different frequencies on four of five cell lines whereas one cell line showed no shoot differentiation. Regenerated shoots detached from callus readily rooted 1 mo. after the transfer onto 0.5% gellan gum-solidified 1/2MS medium lacking plant growth regulators. The plantets were successfully transferred to the greenhouse after acclimatization. No ploidy changes were observed in the callus induced or in the regenerated plantlets. The regenerated plantlets that were transferred to the greenhouse after acclimatization grew normally and did not any morphological signs of somaclonal variation.  相似文献   

19.
Summary A complete and efficient protocol is presented for plant regeneration from cell-suspension cultures of Dalbergia sissoo Roxb., an economically important leguminous tree. Factors influencing callus initiation, establishment of cell-suspension culture, callus formation from embredded microcolonies, and shoot organogenesis from suspension-derived callus were identified. Of the two different auxins tested, callus induction was better on a medium containing naphthalene acetic acid (NAA). The percentage of callus induction increased considerably when NAA at 2.0 mg l−1 (10.8 μM) was added in conjunction with 0.5 mg l−1 (2.2 μM) N6-benzyladenine (BA). Of the three different explants evaluated for callus induction, hypocotyl segments were most responsive. Friable hypocotyl-derived callus from the second subculture passage was used to initiate the cell-suspension culture. Optimum growth of the cell suspension was observed in MS medium supplemented with the same growth regulators as described above for callus induction, with an initial inoculum cell density of 1%. The plating efficiency of the microcolonies was greatly influenced by harvesting time and the gelling agent used for plating. Efficiency was highest (93%) with cells harvested at their exponential growth phase and plated in 1.2 g l−1 Phytagel. Shoot organogenesis from callus cultures was higher on a medium supplemented with a combination of BA and NAA than on BA alone. Seventy-one per cent of cultures exhibited shoot-bud differentiation on a medium containing 3.0 mg l−1 (13.3 μM) BA and 0.5 mg l−1 (2.7 μM) NAA. Regenerated shoots were rooted on half-strength MS medium containing 1 mg l−1 each of indole-3-acetic acid (5.7 μM), indole-3-butyric acid (4.9 μM) and indole-3-propionic acid (5.3 μM). Plantlets were acclimated and established in soil.  相似文献   

20.
Summary Callus induction and later plant regeneration were studied in four widely grown garlic (Allium sativum L.) cultivars from Europe. Root segments from in vitro plantlets were used as starting material. In addition to cultivar effects, the effects of auxin and cytokinin levels and the position of the segments on the root were studied. There were no statistically significant differences among cultivars for the number of root segments that induced callus in the two series of experiments. The average induction frequency was 34.7% in the first series of experiments. Callus induction on apical root segments was significantly higher compared to callus induction on non-apical root segments in the second series of experiments. Two months after callus induction, callus lines were transferred to a regeneration medium consisting of Murashige and Skoog basal medium supplemented with 30gl−1 sucrose and 1 mgl−1 (4.6μM) kinetin. Calluses derived from different experiments were quite uniform with respect to their regeneration potential. Also it was found that our regeneration system was cultivar-independent. The average shoot regeneration frequency was 17.9% in the first series of experiments. Highly significant differences were found in the frequency of shoot regeneration among different callus induction treatments. When the cytokinin 6-(γ,γ-dimethylallylamino)purine (0.1mgl−1∶0.5 μM) was present during callus induction, shoot regeneration ranged from 30.10 to 47.60%. Shoot regeneration from callus induced on non-apical segments was higher, although not significant, compared to callus induction from apical root segments in the second series of experiments. All in all, an efficient callus induction and plant regeneration system was developed from both apical and non-apical segments taken along the entire length of the roots. This system has potential to be used for garlic transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号