首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accessibility of the three F0 subunits a, b and c from the Escherichia coli K12 ATP synthase to various proteases was studied in F1-depleted inverted membrane vesicles. Subunit b was very sensitive to all applied proteases. Chymotrypsin produced a defined fragment of mol. wt. 15,000 which remained tightly bound to the membrane. The cleavage site was located at the C-terminal region of subunit b. Larger amounts of proteases were necessary to attack subunit a (mol. wt. 30,000). There was no detectable cleavage of subunit c. It is suggested that the major hydrophilic part of subunit b extends from the membrane into the cytoplasm and is in contact with the F1 sector. The F1 sector was found to afford some protection against proteolysis of the b subunit in vitro and in vivo. Protease digestion had no influence on the electro-impelled H+ conduction via F0 but ATP-dependent H+ translocation could not be reconstituted upon binding of F1. A possible role for subunit b as a linker between catalytic events on the F1 component and the proton pathway across the membrane is discussed.  相似文献   

2.
A study is presented of the characteristics of redox-linked proton translocation in the b-c1 complex isolated from beef-heart mitochondria and reconstituted into phospholipid vesicles. Measurements of the H+/e- stoichiometry, with three different methods, show that four protons are released from the vesicles per 2e- flowing from quinols to cytochrome c, two of these protons formally deriving from scalar oxidation of quinols by cytochrome c. This H+/e- stoicheiometry is independent of the initial redox state of the b-c1 complex (fully reduced or oxidized) and the rate of electron flow through the complex. It does not change in the pH range 6.0 - 7.2, but declines to 1.5 going with pH from 7.2 - 8.3. This decrease is accompanied by enhancement of the rate of electron flow in the coupled state. Collapse of delta psi effected by valinomycin addition to turning-over b-c1 vesicles resulted in substantial oxidation of cytochrome b-566 and comparable reduction of cytochrome c1, with little oxidation of cytochrome b-562. Nigericin alone had no effect on the steady-state redox levels of b and c cytochromes. Its addition in the presence of valinomycin caused oxidation of b cytochromes but no change in the redox state of cytochrome c1. Valinomycin alone caused a marked enhancement of the rate of electron flow through the complex. Nigericin alone was ineffective, but caused further stimulation of electron flow when added in the presence of valinomycin. The data presented are discussed in terms of two mechanisms: the Q cycle and a model based on combination of protonmotive catalysis by special bound quinone and proton conduction along pathways in the apoproteins.  相似文献   

3.
Possible involvement of polypeptides of b-c1 complex of beef-heart mitochondria in its redox and protonmotive activity has been investigated, by means of chemical modification of amino acid residues in the soluble as well as in the phospholipid-reconstituted b-c1 complex. Treatment of the enzyme with tetranitromethane (C(NO2)4) or with ethoxyformic anhydride (EFA), that modify reversibly tyrosyl and hystidyl residues respectively, resulted in a marked inhibition of electron transport from reduced quinols to cytochrome c. This was accompanied, in b-c1 reconstituted into phospholipid vesicles, by a parallel inhibition of respiratory-linked proton translocation; the H+/e- stoichiometry remained unchanged. Treatment of b-c1 complex with DCCD, that specifically modifies carboxylic groups of glutammic or aspartic residues caused a marked depression of proton translocation in b-c1 vesicles, under conditions where the rate of electron flow in the coupled state, was enhanced. As a consequence the H+/e- stoichiometry was lowered. SDS gel electrophoresis and [14C]DCCD-labelling of the polypeptides of the b-c1 complex showed a major binding of 14C-DCCD to the 8-kDa subunit of the complex and possible cross-linking, induced by DCCD treatment, of polypeptide(s) in the 8-kDa band and the 12-kDa band, with the Fe-s protein of the complex, with the appearance of a new polypeptide band with an apparent molecular mass of about 40 kDa. Involvement of polypeptides of low molecular mass, for which no functional role was so far described, and possibly of the Fe-S protein in the redox-linked proton translocation in b-c1 complex is suggested.  相似文献   

4.
The F0 portion of the rat liver mitochondrial ATP synthase (F0F1-ATPase) has been purified by a rapid, high yield procedure. F0 is selectively extracted from inner membrane vesicles with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) after prior treatment of the vesicles with guanidine HCl to remove F1. The resultant F0 is functional in proton translocation assays and separates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis into four major and three minor Coomassie-stainable bands, all with apparent molecular masses below 30 kDa. This CHAPS-purified F0 preparation was characterized in detail for its capacity to interact with the unique probe diethylstilbestrol (DES) which, depending on conditions, has been shown to interact with rat liver F0F1 to either inhibit or promote ATP hydrolysis (McEnery, M. W., and Pedersen, P.L. (1986) J. Biol. Chem. 261, 1745-1752). DES-inhibitory sensitivity could be conferred on F1-ATPase activity with the same concentration dependence on F0 as conferral of oligomycin sensitivity. DES was shown also to inhibit the magnitude of valinomycin induced proton influx, while initiating proton efflux in asolectin vesicles reconstituted with F0 and loaded with K+. The potency of DES in producing the latter effects was shown to be highly dependent on hydroxyl groups in "para" positions of the two benzene rings within the DES molecule. Finally, in the absence of F0, DES was shown to act as a catalyst of proton influx in K+-loaded asolectin vesicles upon addition of valinomycin. A model based on the structure of DES is presented to account for both the inhibitory and uncoupling properties of this compound.  相似文献   

5.
The energy requirement for protein translocation across membrane was studied with inverted membrane vesicles from an Escherichia coli strain that lacks all components of F1F0-ATPase. An ompF-lpp chimeric protein was used as a model secretory protein. Translocation of the chimeric protein into membrane vesicles was totally inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP) or valinomycin and nigericin and partially inhibited when either valinomycin or nigericin alone was added. Depletion of ATP with glucose and hexokinase resulted in the complete inhibition of the translocation process, and the inhibition was suppressed by the addition of ATP-generating systems such as phosphoenolpyruvate-pyruvate kinase or creatine phosphate-creatine kinase. These results indicate that both the proton motive force and ATP are required for the translocation process. The results further suggest that both the membrane potential and the chemical gradient of protons (delta pH), of which the proton motive force is composed, participate in the translocation process.  相似文献   

6.
A study is presented on the effect of diamide-induced disulfide cross-linking of F(1)-gamma and F(0)I-PVP(b) subunits on proton translocation in the mitochondrial ATP synthase. The results show that, upon cross-linking of these subunits, whilst proton translocation from the A side to the B F(1) side is markedly accelerated with decoupling of oxidative phosphorylation, proton translocation in the reverse direction, driven by either ATP hydrolysis or a diffusion potential, is unaffected. These observations reveal further peculiarities of the mechanism of energy transfer in the ATP synthase of coupling membranes.  相似文献   

7.
Incubation of F1-stripped everted membrane vesicles with antibodies against subunit b of the ATP synthase from Escherichia coli resulted in an inhibition of the binding of F1 to F0, whereas the proton translocation remained unaffected. Incubation of unstripped everted membrane vesicles with anti-b antibodies resulted in a partial loss of F1, and the remaining membrane-bound ATP-hydrolyzing activity is uncoupled from proton translocation. Similar results were obtained when F(ab')2 or Fab fragments were used. The immunoblot analysis of truncated b' subunits different in length showed that the antigenic determinants are located in the carboxyl-terminal half of the polypeptide chain.  相似文献   

8.
Facilitated diffusion of [14C]lactose into inverted membrane vesicles of Escherichia coli was measured using HgCl2 as a stopping reagent and polylysine to flocculate the vesicles for filtration. Equilibration of lactose between the internal and external volumes required expression of the y gene of the lac operon and was inhibited by thiodigalactoside or by prior incubation with N-ethylmaleimde or HgCl2. The initial rate of uptake was saturable, with a Kt of 0.95 mM. Counterflow of [14C]lactose was demonstrated in either direction. ATP hydrolysis or respiration drove the efflux of internal lactose. The effect of ATP required addition of F1 coupling factor (ATPase) from E. coli when lactose transport was studied in F1-deficient inverted vesicles. Accumulation of lactose against a concentration gradient was achieved by forming an artificial electrochemical proton gradient consisting of a membrane potential negative inside or a pH gradient basic inside. Addition of ATP inhibited this proton driven uptake showing that it occurred in inverted vesicles. It was concluded that the lactose-proton co-transport protein (M protein) is qualitatively symmetrical with respect to the facilitated diffusion of lactose and the coupling of proton and lactose transport.  相似文献   

9.
N,N'-Dicyclohexylcarbodiimide (DCCD) induces a complex set of effects on the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations below 1000 mol per mol of cytochrome c1, DCCD is able to block the proton-translocating activity associated to succinate or ubiquinol oxidation without inhibiting the steady-state redox activity of the b-c1 complex either in intact mitochondrial particles or in the isolated ubiquinol-cytochrome c reductase reconstituted in phospholipid vesicles. In parallel to this, DCCD modifies the redox responses of the endogenous cytochrome b, which becomes more rapidly reduced by succinate, and more slowly oxidized when previously reduced by substrates. At similar concentrations the inhibitor apparently stimulates the redox activity of the succinate-ubiquinone reductase. Moreover, DCCD, at concentrations about one order of magnitude higher than those blocking proton translocation, produces inactivation of the redox function of the b-c1 complex. The binding of [14C]DCCD to the isolated b-c1 complex has shown that under conditions leading to the inhibition of the proton-translocating activity of the enzyme, a subunit of about 9500 Da, namely Band VIII, is the most heavily labelled polypeptide of the complex. The possible correlations between the various effects of DCCD and its modification of the b-c1 complex are discussed.  相似文献   

10.
The subunit arrangement of the F0 sector of the Escherichia coli ATP synthase is examined using hydrophilic and hydrophobic (cleavable) cross-linking reagents and the water-soluble labeling reagent [35S] diazoniumbenzenesulfonate ( [35S]DABS). Cross-linking is performed on purified ATP synthase and inverted minicell membranes. ATP synthase incorporated into liposomes is labeled with [35S]DABS. Three cross-linked products involving the F0 subunits (a, b, and c) are observed with the purified ATP synthase in solution: a-b, b2, and c2 dimers. A cross-link between the F0 and F1 is detected and occurs between the a and beta subunits. A cross-linker independent association between the b and beta subunits is also evident, suggesting that the two subunits are close enough to form a disulfide bridge. A cross-linking reagent stable to reducing agents produces a b-beta dimer, as detected by immunoblotting with anti-beta serum. The c subunit does not cross-link with any F1 polypeptide. Minicell membranes containing ATP synthase polypeptides radioactively labeled in vivo similarly show b2 and c2 dimers after cross-linking. [35S]DABS labels the a and b, but not c, subunits, showing that the a and b, but not c, subunits possess hydrophilic domains. Thus, certain domains of subunits a and b extend from the membrane and are in close proximity to one another and the F1 catalytic subunit beta.  相似文献   

11.
ATP hydrolysis and synthesis by the F(0)F(1)-ATP synthase are coupled to proton translocation across the membrane in the presence of magnesium. Calcium is known, however, to disrupt this coupling in the photosynthetic enzyme in a unique way: it does not support ATP synthesis, and CaATP hydrolysis is decoupled from any proton translocation, but the membrane does not become leaky to protons. Understanding the molecular basis of these calcium-dependent effects can shed light on the as yet unclear mechanism of coupling between proton transport and rotational catalysis. We show here, using an actin filament gamma-rotation assay, that CaATP is capable of sustaining rotational motion in a highly active hybrid photosynthetic F(1)-ATPase consisting of alpha and beta subunits from Rhodospirillum rubrum and gamma subunit from spinach chloroplasts (alpha(R)(3)beta(R)(3)gamma(C)). The rotation was found to be similar to that induced by MgATP in Escherichia coli F(1)-ATPase molecules. Our results suggest a possible long range pathway that enables the bound CaATP to induce full rotational motion of gamma but might block transmission of this rotational motion into proton translocation by the F(0) part of the ATP synthase.  相似文献   

12.
Brauer D  Loper M  Schubert C  Tu SI 《Plant physiology》1991,96(4):1114-1117
The mechanism by which proton transport is coupled to ATP hydrolysis by vanadate-sensitive pumps is poorly understood. The effects of temperature on the activities of the vanadate-sensitive ATPase from maize (Zea mays) roots were assessed to provide insight into the coupling mechanism. The initial rate of proton transport had a bell-shaped dependence on temperature with an optimal range between 20 and 30°C. However, the rate of vanadate-sensitive ATP hydrolysis increased as the temperature was raised from 4 to 43°C. The differential sensitivity of proton transport to temperatures above 30°C was also observed when the ATPase was reconstituted into dioleoylphosphatidylcholine vesicles. Inhibition of proton transport with temperatures above 30°C was associated with higher rates of proton leakage from the membranes. In addition, proton transport was more inhibited than ATP hydrolysis at temperatures below 10°C. Reduced rates of proton transport at lower temperatures were not associated with higher rate of proton conductivity across the membranes. Therefore, the preferential inhibition of proton transport at temperatures below 10°C may reflect an effect of temperature on the coupling between proton transport and ATP hydrolysis within the vanadate-sensitive ATPase.  相似文献   

13.
In a rotary motor F1F0-ATP synthase, F0 works as a proton motor; the oligomer ring of F0c-subunits (c-ring) rotates relative to the F0ab2 domain as protons pass through F0 down the gradient. F0ab2 must exert dual functions during rotation, that is, sliding the c-ring (motor drive) while keeping the association with the c-ring (anchor rail). Here we have isolated thermophilic F1F0(-a) which lacks F0a. F1F0(-a) has no proton transport activity, and F0(-a) does not work as a proton channel. Interestingly, ATPase activity of F1F0(-a) is greatly suppressed, even though its F1 sector is intact. Most likely, F0b2 associates with the c-ring as an anchor rail in the intact F1F0; without F0a, this association prevents rotation of the c-ring (and hence the gamma-subunit), which disables ATP hydrolysis at F1. Functional F1F0 is easily reconstituted from purified F0a and F1F0(-a), and thus F0a can bind to its proper location on F1F0(-a) without a large rearrangement of other-subunits.  相似文献   

14.
Unidirectional light-dependent proton translocation was demonstrated in a suspension of reconstituted reaction center (RC) vesicles supplemented with cytochromec and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UQ0), a lipid-and water-soluble quinone. Proton translocation was detected only at alkaline pH. The pH dependence can be accounted for by the slow redox reaction between the reduced quinone (UQ0H2) and oxidized cytochromec. This conclusion is based on (i) the pH dependence of partial reactions of the reconstituted proton translocation cycle, measured either optically or electrometrically and (ii) titration studies with cytochromec and UQ0. At 250 and 25 µM UQ0 and cytochromec, respectively, maximal proton translocation was observed at pH 9.6. This pH optimum can be extended to a more acidic pH by increasing the concentration of the soluble redox mediators in the reconstituted cyclic electron transfer chain. At the alkaline side of the pH optimum, proton translocation appears to be limited by electron transfer from the endogenous primary to the secondary quinone within the RCs. The light intensity limits the reconstituted proton pump at the optimal pH. The results are discussed in the context of a reaction scheme for the cyclic redox reactions and the associated proton translocation events.Abbreviations RC reaction center - UQ0/UQ0H2 oxidized and reduced form of 2,3-dimethoxy-5-methyl-1,4-benzoquinone - D/D+ reduced and oxidized form of the primary electron donor of the RCs - CCCP carbonylcyanide-trichloromethoxy phenylhydrazone - UQA/UQ A oxidized and semiquinone form of the primary electron acceptor of the RCs - UQB/UQ B /UQBH2 oxidized, semiquinone, and reduced form of the secondary electron acceptor of the RCs - LDAO lauryldimethylamine-N-oxide During the course of this study K.J.H. was supported by a grant from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). This research was supported by grants from the National Institutes of Health (EY-02084) and from the Office of Naval Research (ONR-NOOO 14-79-C 0798) to M. Montal.  相似文献   

15.
During ATP hydrolysis, the gammaepsilon c10 complex (gamma and epsilon subunits and a c subunit ring formed from 10 monomers) of F0F1 ATPase (ATP synthase) rotates relative to the alpha3beta3delta ab2 complex, leading to proton transport through the interface between the a subunit and the c subunit ring. In this study, we replaced the two pertinent residues for proton transport, cAsp-61 and aArg-210 of the c and a subunits, respectively. The mutant enzymes exhibited lower ATPase activities than that of the wild type but exhibited ATP-dependent rotation in planar membranes, in which their original assemblies are maintained. The mutant enzymes were defective in proton transport, as shown previously. These results suggest that proton transport can be separated from rotation in ATP hydrolysis, although rotation ensures continuous proton transport by bringing the cAsp-61 and aArg-210 residues into the correct interacting positions.  相似文献   

16.
Membrane vesicles from an Escherichia coli mutant with a deletion of the uncBC operon required ATP to translocate proteins, thus ruling out an essential role of F1F0-H+-ATPase in ATP-dependent protein translocation. Moreover, proteins could be translocated in the absence of proton motive force. At suboptimal ATP concentrations, D-lactate stimulated protein translocation, indicating that proton motive force, although insufficient to support translocation, could facilitate the process.  相似文献   

17.
ATP synthase is conceived as a rotatory engine with two reversible drives, the proton-transporting membrane portion, F0, and the catalytic peripheral portion, F1. They are mounted on a central shaft (subunit gamma) and held together by an eccentric bearing. It is established that the hydrolysis of three molecules of ATP in F1 drives the shaft over a full circle in three steps of 120 degrees each. Proton flow through F0 probably generates a 12-stepped rotation of the shaft so that four proton-translocating steps of 30 degrees each drive the synthesis of one molecule of ATP. We addressed the elasticity of the transmission between F0 and F1 in a model where the four smaller steps in F0 load a torsional spring which is only released under liberation of ATP from F1. The kinetic model of an elastic ATP synthase described a wealth of published data on the synthesis/hydrolysis of ATP by F0F1 and on proton conduction by F0 as function of the pH and the protonmotive force. The pK values of the proton-carrying group interacting with the acidic and basic sides of the membrane were estimated as 5.3-6.4 and 8.0-8.3, respectively.  相似文献   

18.
F(0)F(1)-ATP synthase (H(+)-ATP synthase, F(0)F(1)) utilizes the transmembrane protonmotive force to catalyze the formation of ATP from ADP and inorganic phosphate (P(i)). Structurally the enzyme consists of a membrane-embedded proton-translocating F(0) portion and a protruding hydrophilic F(1) part that catalyzes the synthesis of ATP. In photosynthetic purple bacteria a single turnover of the photosynthetic reaction centers (driven by a short saturating flash of light) generates protonmotive force that is sufficiently large to drive ATP synthesis. Using isolated chromatophore vesicles of Rhodobacter capsulatus, we monitored the flash induced ATP synthesis (by chemoluminescence of luciferin/luciferase) in parallel to the transmembrane charge transfer through F(0)F(1) (by following the decay of electrochromic bandshifts of intrinsic carotenoids). With the help of specific inhibitors of F(1) (efrapeptin) and of F(0) (venturicidin), we decomposed the kinetics of the total proton flow through F(0)F(1) into (i) those coupled to the ATP synthesis and (ii) the de-coupled proton escape through F(0). Taking the coupled proton flow, we calculated the H(+)/ATP ratio; it was found to be 3.3+/-0.6 at a large driving force (after one saturating flash of light) but to increase up to 5.1+/-0.9 at a smaller driving force (after a half-saturating flash). From the results obtained, we conclude that our routine chromatophore preparations contained three subsets of chromatophore vesicles. Chromatophores with coupled F(0)F(1) dominated in fresh material. Freezing/thawing or pre-illumination in the absence of ADP and P(i) led to an increase in the fraction of chromatophores with at least one de-coupled F(0)(F(1)). The disclosed fraction of chromatophores that lacked proton-conducting F(0)(F(1)) (approx. 40% of the total amount) remained constant upon these treatments.  相似文献   

19.
Stable membrane proteins and lipids are convenient to study biomembranes. Two stable proton translocating proteins were purified and reconstituted into vesicles capable of proton translocation. One was a thermostable ATPase (TF0-F1) of thermophilic bacterium PS3 and the other was rhodopsin of Halobacterium halobium. TF0-F1 was composed of a proton pump moiety (TF1) and a proton channel moiety (TF0). TF1 was the first membrane ATPase which was crystallized and reconstituted from its five polypeptides. Like TF0 and TF1, the rhodopsin in purple membrane was highly stable against dissociating agents, acids and alkali. Phospholipids of these biomembranes were also stable and contained no unsaturated fatty acyl groups. The molecular species of the phospholipids of PS3 were determined by mass chromatography. Measurements were made of the difference in electrochemical potential of protons (deltamicronH+) across the membrane of the reconstituted vesicles. The deltamicronH+ attained was 312 mV in TF0-F1 vesciles and was 230 mV in the rhodopsin vesicles. To conclude that electron transport components are not necessary for ATP synthesis in energy yielding biomembranes, two experiments were performed: The ATP synthesis was observed i) on acid-base treatment of TF0-F1 vesicles, and ii) on illumination of the rhodopsin-TF0-F1 vesicles.  相似文献   

20.
F0F1 ATP synthases synthesize ATP in their F1 portion at the expense of free energy supplied by proton flow which enters the enzyme through their channel portion F0. The smaller subunits of F1, especially subunit delta, may act as energy transducers between these rather distant functional units. We have previously shown that chloroplast delta, when added to thylakoids partially depleted of the coupling factor CF1, can reconstitute photophosphorylation by inhibiting proton leakage through exposed coupling factor CF0. In view of controversies in the literature, we reinvestigated two further aspects related to subunit delta, namely (a) its stoichiometry in CF0CF1 and (b) whether or not delta is required for photophosphorylation. By rocket immunoelectrophoresis of thylakoid membranes and calibration against purified delta, we confirmed a stoichiometry of one delta per CF0CF1. In CF1-depleted thylakoids photophosphorylation could be reconstituted not only by adding CF1 and subunit delta but, surprisingly, also by CF1 (-delta). We found that the latter was attributable to a contamination of CF1 (-delta) preparations with integral CF1. To lesser extent CF1 (-delta) acted by complementary rebinding to CF0 channels that were closed because they contained delta [CF0(+delta)]. This added catalytic capacity to proton-tight thylakoid vesicles. The ability of subunit delta to control proton flow through CF0 and the absolute requirement for delta in restoration of photophosphorylation suggest an essential role of this small subunit at the interface between the large portions of ATP synthase: delta may be part of the coupling site between electrochemical, conformational and chemical events in this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号