首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on the response of bird communities to surface mining and habitat modification are limited, with virtually no data examining the effects of mining on bird communities in and along riparian forest corridors. Bird community composition was examined using line transects from 1994 to 2000 at eight sites within and along a riparian forest corridor in southwestern Indiana that was impacted by an adjacent surface mining operation. Three habitats were sampled: closed canopy, riparian forest with no open water; fragmented canopy, riparian forest with flood plain oxbows; and reclaimed mined land with constructed ponds. Despite shifts in species composition, overall bird species richness, measured as the mean number of bird species recorded/transect route, did not differ among habitats and remained unchanged across years. More species were recorded solely on mined land than in either closed forest or forested oxbow habitats. Mined land provided stopover habitat for shorebirds and waterfowl not recorded in other habitats, and supported an assemblage of grassland-associated bird species weakly represented in the area prior to mining. A variety of wood warblers and other migrants were recorded in the forest corridor throughout the survey period, suggesting that, although surface mining reduced the width of the forest corridor, the corridor was still important habitat for movement of forest-dependent birds and non-resident bird species in migration. We suggest that surface mining and reclamation practices can be implemented near riparian forest and still provide for a diverse assemblage of bird species. These data indicate that even narrow (0.4 km wide) riparian corridors are potentially valuable in a landscape context as stopover habitats and routes of dispersal and movement of forest-dependent and migratory bird species.  相似文献   

2.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

3.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   

4.
Direct tracking methods in combination with remote sensing data allow examination of habitat use by birds during migration. Species that roost communally during migration, such as some swallows, form large aggregations that can attract both avian and terrestrial predators. However, the extent to which they might use patchy habitats that could reduce predation risk during migration is unknown. We tested the hypothesis that Purple Martins (Progne subis) use forest islands (patches of suitable forest habitat surrounded by unsuitable habitat) as roost sites during migration between breeding sites in North America and overwintering sites in South America. We used high‐precision (< 10 m), archival GPS units deployed and retrieved during the 2015 and 2016 breeding seasons, respectively, at 12 colonies located across eastern North America. We found that Purple Martins roosted in forest islands more often than expected based on availability during both spring and fall migration. Despite an apparent association with urban habitats by Purple Martins based on observational and radar data in North America during the fall, the roost locations we identified during spring and fall migration were not more closely associated with urban areas than random locations. The use of forest islands during both spring and fall migration suggest that Purple Martins may use these habitats to reduce predation risk during migration. Our results suggest that some species of birds may use similar habitats as stopover sites during migration and that patches of forest habitat may be important conservation targets for Purple Martins and other species. Identifying habitat use during migration represents an important advance in support of full annual‐cycle conservation of Purple Martins and other migratory species with declining populations.  相似文献   

5.
Å. Berg 《Bird Study》2013,60(2):153-165
CapsuleThe amount of forest (at local and landscape scales) and occurrence of residual habitats at the local scale are shown to be the major factors influencing bird community composition in farmland–forest landscapes in central Sweden.

Aims To investigate the importance of local habitat and landscape structure for breeding birds in farmland–forest landscapes in central Sweden.

Methods Breeding birds were censused at 292 points. A detailed habitat mapping was made within 300 m of the points. Within a 300–600 m radius only two major habitats (forests and arable fields) were identified.

Results Cluster analyses of bird communities identified three site types that also differed in habitat composition: (i) partially forested sites in forested landscapes; (ii) heterogeneous sites with residual habitats in mosaic landscapes; and (iii) field-dominated farmland sites in open landscapes. A total of 19 of 25 farmland bird species (restricted to farmland or using both farmland and forest) had the highest abundance in farmland sites with mosaics of forest and farmland, while only six farmland species had the highest abundance in field-dominated sites. The bird community changed from being dominated by farmland species to being dominated by forest species (common in forest landscapes without farmland) at small proportions (10–20%) of forest at the local scale. A major difference in habitat composition between heterogeneous and field-dominated sites was the occurrence of different residual habitats (e.g. shrubby areas and seminatural grasslands). These habitats seemed to influence bird community composition more than land-use, despite covering <10% of the area. Seminatural grasslands were important for bird community composition and species-richness, but grazing seemed to be less important. Among different land-use types, cereal crops were the least preferred fields. Set-asides with tall vegetation and short rotation coppices were positively associated with species-richness of farmland birds.

Conclusion In general, the composition of the landscape was important for bird community composition, although amount and distribution of forests, occurrence of residual habitats and land-use of fields at the local scale had the strongest influence on bird community composition. The possible implications of these patterns for managing farmland–forest landscapes are discussed.  相似文献   

6.
Aim Range expansion across a heterogeneous landscape may depend on the habitat selected and used by the expanding species. If habitat selection influences range expansion then localities colonized by a species should contain a greater proportion of favoured habitat (and less non‐habitat) than other nearby localities not colonized. White‐winged doves (Zenaida asiatica) and Eurasian collared doves (Streptopelia decaocto) are two bird species that provide an excellent opportunity to test this hypothesis, because the geographic ranges of both species have been expanding in North America for more than two decades. Location Continental USA. Methods We used distribution data from the North American Breeding Bird Survey to test whether the landscapes occupied by each species contained a greater proportion of favoured habitat (urban land, grassland/pasture, shrub land and cropland) and a lower proportion of non‐habitat (forest land) than landscapes where doves were not found. We tested each species separately in each of three broad expansion areas, namely East, Central and West. We also compared rates of spatial spread between expansion areas and between the two species. Results As predicted, both species tended to occupy landscapes with greater proportions of urban land, shrub land and cropland but with less forest land compared with landscapes without doves, in all three expansion areas. Contrary to prediction, occupied landscapes tended to have slightly less grassland/pasture than unoccupied landscapes. Rates of spread differed between the two species and among expansion areas. Main conclusions Range expansion and the extent to which a species fills or saturates its range are influenced by the habitat ecology of the expanding species. Species colonize localities based on the availability of suitable habitat. However, the role of habitat in a species’ range expansion does depend somewhat on the greater geographical setting. Over large regional and geographical scales, range expansion (rate of spread and saturation) may proceed unevenly, suggesting that range expansion is a very dynamic and context‐specific process.  相似文献   

7.
With many of the world's migratory bird populations in alarming decline, broad‐scale assessments of responses to migratory hazards may prove crucial to successful conservation efforts. Most birds migrate at night through increasingly light‐polluted skies. Bright light sources can attract airborne migrants and lead to collisions with structures, but might also influence selection of migratory stopover habitat and thereby acquisition of food resources. We demonstrate, using multi‐year weather radar measurements of nocturnal migrants across the northeastern U.S., that autumnal migrant stopover density increased at regional scales with proximity to the brightest areas, but decreased within a few kilometers of brightly‐lit sources. This finding implies broad‐scale attraction to artificial light while airborne, impeding selection for extensive forest habitat. Given that high‐quality stopover habitat is critical to successful migration, and hindrances during migration can decrease fitness, artificial lights present a potentially heightened conservation concern for migratory bird populations.  相似文献   

8.
Stopover behavior of migrant birds is influenced by their energetic condition, but also by extrinsic factors, including weather conditions and habitat attributes such as vegetation structure, microclimates, predation pressure, competition, and food availability. Anthropogenic habitats may differ from natural habitats in these attributes, which could promote differing stopover behaviors for migrants in the two habitat types and affect overall habitat suitability. We used radio‐telemetry to measure stopover behaviors of fall migrant yellow‐rumped warblers Setophaga coronata in native riparian corridor woodlands (corridors) and anthropogenic woodlots (woodlots) in the Northern Prairie region. We measured stopover duration, movement rate, and temporary home range size for birds in both habitat types by attaching radio‐transmitters and relocating birds to either corridor (n = 17) or woodlot (n = 16) study sites. We used AICC to rank null, global, and reduced models, which included habitat type, energetic condition, habitat size, year, date, and movement rate (for stopover duration analyses only) as explanatory variables. Model rankings showed that habitat type was not included in any of the top models (ΔAICC < 2) for movement behavior, temporary home range size, or stopover duration, which suggests similar functional habitat quality between the two habitat types. These data add similar behavioral responses for birds in the two habitat types to similar fattening rates and stress physiology, further confirming similar suitability of native and anthropogenic woodland habitats in this region as stopover habitat. We also applied logistic regression with a model selection approach, including cloud cover, tail wind component, temperature, and barometric pressure as independent variables, and departure decision as the dependent variable, to evaluate the effects of weather variables on departure. Model selection suggested that cloud cover is a prominent factor affecting departure decisions and the other variables may also influence departure decisions of yellow‐rumped warblers from inland stopover sites.  相似文献   

9.
The long history of human influence on northern temperate landscapes has created a mosaic of successional stages, from closed forest to open grassland. Various species thus adapted to different habitats and it is interesting to explore how these differences in species composition among particular successional stages translate into differences at the community level. For this purpose, we surveyed breeding birds in 233 patches of five different habitats covering a gradient from bare ground to forest in 29 abandoned military training sites scattered throughout the Czech Republic. Linear mixed effects modelling revealed that late-successional habitats (dense scrubland and forest) were the most species-rich, whereas early-successional stages hosted bird communities with the highest habitat specialization and threat level. These results suggest that the habitats of late-successional stages are important for the maintenance of high bird species richness, but that early-successional habitats are essential for highly specialized and threatened bird species. Given the highly adverse impacts of agricultural intensification and land abandonment on open habitats, it is necessary to promote factors creating initial successional stages suitable for specialized and threatened species.  相似文献   

10.
To determine use of riparian habitats by birds in the northern coniferous forest of British Columbia, we censused birds and vegetation along 500 m transects placed parallel and perpendicular to three second-order streams. Censuses were conducted during spring, summer, autumn, and winter to investigate how use of riparian habitat changed seasonally. Stream-side riparian zones were characterized by a dense understorey of deciduous vegetation not found in the upslope forest. Nine bird species preferred the riparian understorey for breeding, six preferred it only during migration. Neotropical migrants (16 of 46 species) were more closely associated with stream-sides than year-round residents (11 species). Some breeding birds (five species) were significantly negatively associated with riparian habitats. The density of riparian birds declined with distance upstream but did not decline up to 250 m away from the stream. The more extensive riparian areas downstream supported a greater density of birds in all seasons compared to upstream areas, but more species only in spring and autumn. Species that nested in non-riparian areas in summer used riparian habitat in autumn, making riparian corridors in the northern coniferous forest important during migration. Maintaining both riparian and upslope habitats is necessary to preserve species diversity al the landscape level.  相似文献   

11.
迁徙鸟类对中途停歇地的利用及迁徙对策   总被引:13,自引:3,他引:10  
马志军  李博  陈家宽 《生态学报》2005,25(6):1404-1412
中途停歇地是迁徙鸟类在繁殖地和非繁殖地之间的联系枢纽,对于迁徙鸟类完成其完整的生活史过程具有重要作用。从鸟类的迁徙对策、中途停歇地的选择、鸟类在中途停歇地的停留时间、体重变化和种群特征以及中途停歇地的环境状况等方面,回顾了中途停歇生态学在近年来的研究进展,并提出了在迁徙对策理论的实验研究,小型鸟类在中途停歇地的停歇时间及体重变化的准确确定等目前有待解决的问题。  相似文献   

12.
Understanding resource selection by animals is important when considering habitat suitability at proposed release sites within threatened species recovery programmes. Multi-scale investigatory approaches are increasingly encouraged, as the patchy distribution of suitable habitats in fragmented landscapes often determines species presence and survival. Habitat models applied to a threatened New Zealand forest passerine, the South Island saddleback (Philesturnus carunculatus carunculatus), reintroduced to Ulva Island (Stewart Island) found that at landscape scale breeding pairs? preferences for sites near the coast were driven by micro-scale vegetation structure. We tested these results by examining models of breeding site selection by a reintroduced saddleback population on Motuara Island (Marlborough Sounds) at two scales: (1) micro-scale, for habitat characteristics that may drive breeding site selection, and (2) landscape scale, for variations in micro-scale habitat characteristics that may influence site colonisation in breeding pairs. Results indicated that birds on Motuara Island responded similarly to those on Ulva Island, i.e. birds primarily settled at the margins of coastal scrub and forest and later cohorts moved into larger stands of coastal forest where they established breeding territories. Plant species composition was also important in providing breeding saddleback pairs with adequate food supply and nesting support. However, Motuara Island birds differed in their partitioning of habitat use: preferred habitats were used for nesting while birds were foraging outside territorial boundaries or in shared sites. These differences may be explained because Motuara has a more homogeneous distribution of microscale habitats throughout the landscape and a highly bird-populated environment. These results show that resource distribution and abundance across the landscape needs to be accounted for in the modelling of density?bird?habitat relationships. In the search for future release sites, food (invertebrates and fruiting tree species) should be abundant close to available nesting sites, or evenly spread and available throughout the landscape.  相似文献   

13.
Invasive species are often favoured in fragmented, highly-modified, human-dominated landscapes such as urban areas. Because successful invasive urban adapters can occupy habitat that is quite different from that in their original range, effective management programmes for invasive species in urban areas require an understanding of distribution, habitat and resource requirements at a local scale that is tailored to the fine-scale heterogeneity typical of urban landscapes. The common brushtail possum (Trichosurus vulpecula) is one of New Zealand’s most destructive invasive pest species. As brushtail possums traditionally occupy forest habitat, control in New Zealand has focussed on rural and forest habitats, and forest fragments in cities. However, as successful urban adapters, possums may be occupying a wider range of habitats. Here we use site occupancy methods to determine the distribution of brushtail possums across five distinguishable urban habitat types during summer, which is when possums have the greatest impacts on breeding birds. We collected data on possum presence/absence and habitat characteristics, including possible sources of supplementary food (fruit trees, vegetable gardens, compost heaps), and the availability of forest fragments from 150 survey locations. Predictive distribution models constructed using the programme PRESENCE revealed that while occupancy rates were highest in forest fragments, possums were still present across a large proportion of residential habitat with occupancy decreasing as housing density increased and green cover decreased. The presence of supplementary food sources was important in predicting possum occupancy, which may reflect the high nutritional value of these food types. Additionally, occupancy decreased as the proportion of forest fragment decreased, indicating the importance of forest fragments in determining possum distribution. Control operations to protect native birds from possum predation in cities should include well-vegetated residential areas; these modified habitats not only support possums but provide a source for reinvasion of fragments.  相似文献   

14.
Habitat use and habitat selection are essential for successful stopovers. Passerine migrants use habitats in a clearly non-random manner, even if many species utilise a broader range of habitats during passage than during breeding or wintering. Habitat selection proceeds as a sequence of events: landfall; search/settling, including redistribution across habitats if necessary; and habitat exploitation, with all stages probably condition-dependent. This review is aimed at studying this sequence and also the factors which govern decision-making in nocturnal passerine migrants at all levels. In most cases, habitats are (pre)selected by migrants already at landfall using both visual and acoustic cues. After landfall, migrants start to perform direct sampling of habitats during which they may move constantly and perform fine-tuning of their habitat choice. Some species subsequently occupy a small home range in a particular (micro)habitats, whereas others continue to move broadly during the whole stopover period. An interaction of several factors shapes the use of habitats after landing, among which are migrants’ innate preferences and functional morphology, foraging strategies and food resource distribution, habitat carrying capacity and exposure to predators. The large-scale spatial context probably also plays a role which might be currently underestimated.  相似文献   

15.
Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.  相似文献   

16.
Sara Henningsson  Thomas Alerstam 《Oikos》2008,117(11):1619-1628
Several different factors may determine where species range limits are located within regions of otherwise continuously available habitat and suitable climate. Within the Arctic tundra biome many bird species are migratory and their breeding distributions are affected by migration routes that are in turn limited by factors such as suitable winter habitat, migratory stopover sites, geographical barriers and historical routes of colonization. We identified longitudinal zones in the circumpolar Arctic of pronounced changes in the avian species composition (high species spatial turnover; ‘species divides’). We tested for the association between migratory status and the geographical location and numbers of such species divides for species with non‐breeding habitats mainly within terrestrial, pelagic and coastal ecosystems. Our results demonstrate that migration is of profound importance for both the number and locations of species divides in the Arctic. Long‐distance migration is associated with a large number of divides among terrestrial and coastal arctic birds but with a reduced number of divides among pelagic birds. We suggest that long‐distance migration permits pelagic but not terrestrial and coastal birds to colonize large winter ranges, which in turn causes expansion of breeding ranges, with more homogenous communities and reduction of species divides as consequences, among the long‐distance migrants of pelagic but not of terrestrial and coastal birds. Furthermore, the divides among long‐distance migrants are situated in two main regions, the Beringia and Greenland zones, while divides among short‐distance migrants are more evenly spaced throughout the circumpolar Arctic. The Beringia and Greenland divides result largely from inter‐continental colonization of new breeding ranges but retainment of original winter quarters in a process of evolution through extension of migration routes, leading to aggregated divides in the meeting zones of major global flyways.  相似文献   

17.
Predicting how migratory animals respond to changing climatic conditions requires knowledge of how climatic events affect each phase of the annual cycle and how those effects carry-over to subsequent phases. We utilized a 17-year migration dataset to examine how El Niño-Southern Oscillation climatic events in geographically different regions of the Western hemisphere carry-over to impact the stopover biology of several intercontinental migratory bird species. We found that migratory birds that over-wintered in South America experienced significantly drier environments during El Niño years, as reflected by reduced Normalized Difference Vegetation Index (NDVI) values, and arrived at stopover sites in reduced energetic condition during spring migration. During El Niño years migrants were also more likely to stopover immediately along the northern Gulf coast of the southeastern U.S. after crossing the Gulf of Mexico in small suboptimal forest patches where food resources are lower and migrant density often greater than larger more contiguous forests further inland. In contrast, NDVI values did not differ between El Niño and La Niña years in Caribbean-Central America, and we found no difference in energetic condition or use of coastal habitats for migrants en route from Caribbean-Central America wintering areas. Birds over-wintering in both regions had consistent median arrival dates along the northern Gulf coast, suggesting that there is a strong drive for birds to maintain their time program regardless of their overall condition. We provide strong evidence that not only is the stopover biology of migratory landbirds influenced by events during the previous phase of their life-cycle, but where migratory birds over-winter determines how vulnerable they are to global climatic cycles. Increased frequency and intensity of ENSO events over the coming decades, as predicted by climatic models, may disproportionately influence long-distance migrants over-wintering in South America.  相似文献   

18.
迁徙鸟类中途停歇期的生理生态学研究   总被引:5,自引:3,他引:2  
马志军  王勇  陈家宽 《生态学报》2005,25(11):3067-6075
大多数候鸟的迁徙活动由迁徙飞行和中途停歇两个部分组成。在迁徙过程中,鸟类要多次交替经历消耗能量的飞行阶段和积累能量的中途停歇阶段。从鸟类在中途停歇时期的能量积累速度、体重变化模式以及迁徙飞行中的禁食或食物限制、食物种类的改变、中途停歇的能量快速积累过程对消化器官的影响等方面,对目前迁徙鸟类的生理生态学研究成果进行回顾,并提出有待解决的问题及今后的研究方向。  相似文献   

19.
Increased production of bioenergy crops in North America is projected to exacerbate already heavy demands upon existing agricultural landscapes with potential to impact biodiversity negatively. Grassland specialist birds are an imperilled avifauna for which perennial-based, next-generation agroenergy feedstocks may provide suitable habitat. We take a multi-scaled spatial approach to evaluate the ability of two candidate second-generation agroenergy feedstocks (switchgrass, Panicum virgatum, and mixed grass–forb plantings) to act as spring migratory stopover habitat for birds. In total, we detected 35 bird species in mixed grass–forb plantings and switchgrass plantings, including grassland specialists and species of state and national conservation concern (e.g., Henslow’s Sparrow, Ammodramus henslowii). Some evidence indicated that patches with higher arthropod food availability attracted a greater diversity of migrant bird species, but species richness, total bird abundance, and the abundance of grassland specialist species were similar in fields planted with either feedstock. Species richness per unit area (species density) was relatively higher in switchgrass fields. The percent land cover of forest in landscapes surrounding study fields was negatively associated with bird species richness and species density. Habitat patch size and within-patch vegetation structure were unimportant in predicting the diversity or abundance of spring en route bird assemblages. Our results demonstrate that both switchgrass and mixed grass–forb plantings can attract diverse assemblages of migrant birds. As such, industrialized production of these feedstocks as agroenergy crops has the potential to provide a source of en route habitat for birds, particularly where fields are located in relatively unforested landscapes. Because industrialization of cellulosic biomass production will favor as yet unknown harvest and management regimes, predicting the ultimate value of perennial-based biomass plantings for spring migrants remains difficult.  相似文献   

20.
The Gulf of Mexico is a conspicuous feature of the Neotropical–Nearctic bird migration system. Traveling long distances across ecological barriers comes with considerable risks, and mortality associated with intercontinental migration may be substantial, including that caused by storms or other adverse weather events. However, little, if anything, is known about how migratory birds respond to disturbance‐induced changes in stopover habitat. Isolated, forested cheniere habitat along the northern coast of the Gulf of Mexico often concentrate migrants, during weather conditions unfavorable for northward movement or when birds are energetically stressed. We expected hurricane induced degradation of this habitat to negatively affect the abundance, propensity to stopover, and fueling trends of songbirds that stopover in coastal habitat. We used spring banding data collected in coastal Louisiana to compare migrant abundance and fueling trends before (1993–1996 and 1998–2005) and after hurricanes Rita (2006) and Ike (2009). We also characterized changes in vegetative structure before (1995) and after (2010) the hurricanes. The hurricanes caused dramatic changes to the vegetative structure, which likely decreased resources. Surprisingly, abundance, propensity to stopover, and fueling trends of most migrant species were not influenced by hurricane disturbance. Our results suggest that: 1) the function of chenieres as a refuge for migrants after completing a trans‐Gulf flight may not have changed despite significant changes to habitat and decreases in resource availability, and 2) that most migrants may be able to cope with habitat disturbance during stopover. The fact that migrants use disturbed habitat points to their conservation value along the northern coast of the Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号