首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.  相似文献   

3.
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.  相似文献   

4.
ZC3H20 and ZC3H21 are related trypanosome proteins with two C(x)8C(x)5C(x)3H zinc finger motifs. ZC3H20 is present at a low level in replicating mammalian-infective bloodstream forms, but becomes more abundant when they undergo growth arrest at high density; ZC3H21 appears only in the procyclic form of the parasite, which infects Tsetse flies. Each protein binds to several hundred mRNAs, with overlapping but not identical specificities. Both increase expression of bound mRNAs, probably through recruitment of the MKT1-PBP1 complex. At least 28 of the bound mRNAs decrease after depletion of ZC3H20, or of ZC3H20 and ZC3H21 together; their products include procyclic-specific proteins of the plasma membrane and energy metabolism. Simultaneous depletion of ZC3H20 and ZC3H21 causes procyclic forms to shrink and stop growing; in addition to decreases in target mRNAs, there are other changes suggestive of loss of developmental regulation. The bloodstream-form-specific protein RBP10 controls ZC3H20 and ZC3H21 expression. Interestingly, some ZC3H20/21 target mRNAs also bind to and are repressed by RBP10, allowing for dynamic regulation as RBP10 decreases and ZC3H20 and ZC3H21 increase during differentiation.  相似文献   

5.
6.
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.  相似文献   

7.
8.
As one of the leading causes of visual impairment and blindness, myopia poses a significant public health burden in Asia. The primary determinant of myopia is an elongated ocular axial length (AL). Here we report a meta-analysis of three genome-wide association studies on AL conducted in 1,860 Chinese adults, 929 Chinese children, and 2,155 Malay adults. We identified a genetic locus on chromosome 1q41 harboring the zinc-finger 11B pseudogene ZC3H11B showing genome-wide significant association with AL variation (rs4373767, β = −0.16 mm per minor allele, Pmeta = 2.69×10−10). The minor C allele of rs4373767 was also observed to significantly associate with decreased susceptibility to high myopia (per-allele odds ratio (OR) = 0.75, 95% CI: 0.68–0.84, Pmeta = 4.38×10−7) in 1,118 highly myopic cases and 5,433 controls. ZC3H11B and two neighboring genes SLC30A10 and LYPLAL1 were expressed in the human neural retina, retinal pigment epithelium, and sclera. In an experimental myopia mouse model, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for the murine genes ZC3H11A, SLC30A10, and LYPLAL1. This supports the likely role of genetic variants at chromosome 1q41 in influencing AL variation and high myopia.  相似文献   

9.

Summary

The X-chromosome-linked clusters of the tandemly repeated testis-specific Stellate genes of Drosophila melanogaster, encoding proteins homologous to the regulatory β-subunit of the protein kinase casein kinase 2 (CK2), are repressed in wild-type males. Derepression of Stellate genes in the absence of the Y chromosome or Y-linked crystal locus (crystal line) causes accumulation of abundant protein crystals in testes and different meiotic abnormalities, which lead to partial or complete male sterility. To understand the cause of abnormalities in chromosome behavior owing to Stellate overexpression, we studied subcellular localization of Stellate proteins by biochemical fractionation and immunostaining of whole testes. We showed that, apart from the known accumulation of Stellate in crystalline form, soluble Stellate was located exclusively in the nucleoplasm, whereas Stellate crystals were located mainly in the cytoplasm. Coimmunoprecipitation experiments revealed that the α-subunit of the protein kinase CK2 (CK2α) was associated with soluble Stellate. Interaction between soluble Stellate and CK2α in the nucleus could lead to modulations in the phosphorylation of nuclear targets of CK2 and abnormalities in the meiotic segregation of chromosomes. We also observed that Stellate underwent lysine methylation and mimicked trimethyl-H3K9 epigenetic modification of histone H3 tail.  相似文献   

10.
11.
12.
13.
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5′ CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.  相似文献   

14.
15.
Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.  相似文献   

16.
17.
18.
During spermatogenesis, mRNA localization and translation are believed to be regulated in a stage-specific manner. We report here that the Protamine2 (Prm2) mRNA transits through chromatoid bodies of round spermatids and localizes to cytosol of elongating spermatids for translation. The transacting factor CBF-A, also termed Hnrnpab, contributes to temporal regulation of Prm2 translation. We found that CBF-A co-localizes with the Prm2 mRNA during spermatogenesis, directly binding to the A2RE/RTS element in the 3′ UTR. Although both p37 and p42 CBF-A isoforms interacted with RTS, they associated with translationally repressed and de-repressed Prm2 mRNA, respectively. Only p42 was found to interact with the 5′cap complex, and to co-sediment with the Prm2 mRNA in polysomes. In CBF-A knockout mice, expression of protamine 2 (PRM2) was reduced and the Prm2 mRNA was prematurely translated in a subset of elongating spermatids. Moreover, a high percentage of sperm from the CBF-A knockout mouse showed abnormal DNA morphology. We suggest that CBF-A plays an important role in spermatogenesis by regulating stage-specific translation of testicular mRNAs.  相似文献   

19.
Translational pausing in Escherichia coli can lead to mRNA cleavage within the ribosomal A-site. A-site mRNA cleavage is thought to facilitate transfer-messenger RNA (tmRNA)·SmpB- mediated recycling of stalled ribosome complexes. Here, we demonstrate that the aminoglycosides paromomycin and streptomycin inhibit A-site cleavage of stop codons during inefficient translation termination. Aminoglycosides also induced stop codon read-through, suggesting that these antibiotics alleviate ribosome pausing during termination. Streptomycin did not inhibit A-site cleavage in rpsL mutants, which express streptomycin-resistant variants of ribosomal protein S12. However, rpsL strains exhibited reduced A-site mRNA cleavage compared with rpsL+ cells. Additionally, tmRNA·SmpB-mediated SsrA peptide tagging was significantly reduced in several rpsL strains but could be fully restored in a subset of mutants when treated with streptomycin. The streptomycin-dependent rpsL(P90K) mutant also showed significantly lower levels of A-site cleavage and tmRNA·SmpB activity. Mutations in rpsD (encoding ribosomal protein S4), which suppressed streptomycin dependence, were able to partially restore A-site cleavage to rpsL(P90K) cells but failed to increase tmRNA·SmpB activity. Taken together, these results show that perturbations to A-site structure and function modulate A-site mRNA cleavage and tmRNA·SmpB activity. We propose that tmRNA·SmpB binds to streptomycin-resistant rpsL ribosomes less efficiently, leading to a partial loss of ribosome rescue function in these mutants.  相似文献   

20.

Background

The Escherichia coli version of the mammalian signal recognition particle (SRP) system is required for biogenesis of membrane proteins and contains two essential proteins: the SRP subunit Ffh and the SRP-receptor FtsY. Scattered in vivo studies have raised the possibility that expression of membrane proteins is inhibited in cells depleted of FtsY, whereas Ffh-depletion only affects their assembly. These differential results are surprising in light of the proposed model that FtsY and Ffh play a role in the same pathway of ribosome targeting to the membrane. Therefore, we decided to evaluate these unexpected results systematically.

Methodology/Principal Findings

We characterized the following aspects of membrane protein biogenesis under conditions of either FtsY- or Ffh-depletion: (i) Protein expression, stability and localization; (ii) mRNA levels; (iii) folding and activity. With FtsY, we show that it is specifically required for expression of membrane proteins. Since no changes in mRNA levels or membrane protein stability were detected in cells depleted of FtsY, we propose that its depletion may lead to specific inhibition of translation of membrane proteins. Surprisingly, although FtsY and Ffh function in the same pathway, depletion of Ffh did not affect membrane protein expression or localization.

Conclusions

Our results suggest that indeed, while FtsY-depletion affects earlier steps in the pathway (possibly translation), Ffh-depletion disrupts membrane protein biogenesis later during the targeting pathway by preventing their functional assembly in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号