首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite highest standards in nerve repair, functional recovery following nerve transection still remains unsatisfactory. Nonspecific reinnervation of target organs caused by misdirected axonal growth at the repair site is regarded as one reason for a poor functional outcome. This study was conducted to establish a method for preventing aberrant reinnervation between transected and repaired nerves in adjacency. Rat sciatic nerve was transected and repaired as follows: epineural sutures of the sciatic nerve (group A, n = 6), fascicular repair of tibial and peroneal nerves respectively (group B, n = 8), and, as in group B, separating both nerves using a pedicle fat flap as barrier (group C, n = 8). As control only, the tibial nerve was transected and repaired (group D, n = 5). Muscle contraction force of the gastrocnemius muscle was significantly higher in group C as compared with groups A and B after 4 months. Muscle weight showed significantly lower values in group A as compared with groups B, C, and D. Histologic examination in group C revealed little growth of axons from the tibial to the peroneal nerve and vice versa. This axon crossing was observed only when gaps between the fat cells were available. These findings were confirmed by a significantly lower rate of misdirected axonal growth as compared with groups A and B using sequential retrograde double labeling technique of the soleus motoneuron pool. We conclude that a pedicle fat flap significantly prevents aberrant reinnervation between repaired adjacent nerves resulting in significantly improved motor recovery in rats. Clinically, this is of importance for brachial plexus, sciatic nerve, and facial nerve repair.  相似文献   

2.
ABSTRACT: Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional evaluation analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship. As such, animals received either a 2 cm sciatic nerve defect (neurotmesis) followed by autologous nerve transplantation (ANT animals) or a crush injury with spontaneous recovery (axonotmesis; CI animals). Functional recovery of toe spreading was observed over an observation period of 84 days. In contrast to CI animals, ANT animals did not reach pre-surgical levels of toe spreading. After the observation period, the lipophilic dye DiI was applied to label sensory and motor neurons in dorsal root ganglia (DRG; sensory neurons) and spinal cord (motor neurons), respectively. No statistical difference in motor or sensory neuron counts could be detected between ANT and CI animals. In the present study we could indicate that there was no direct relationship between functional recovery (toe spreading) measured by SSI and the number of labelled (motor and sensory) neurons evaluated by retrograde tracing. The present findings demonstrate that a multimodal approach with a variety of independent evaluation tools is essential to understand and estimate the therapeutic benefit of a nerve repair strategy.  相似文献   

3.
ABSTRACT: BACKGROUND: Nerve conduits provide a promising strategy for peripheral nerve injury repair. However, the efficiency of nerve conduits to enhance nerve regeneration and functional recovery is often inferior to that of autografts. Nerve conduits require additional factors such as cell adhesion molecules and neurotrophic factors to provide a more conducive microenvironment for nerve regeneration. METHODS: In the present study, poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} (PLGL) was modified by grafting Gly-Arg-Gly-Asp-Gly (RGD peptide) and nerve growth factor (NGF) for fabricating new PLGL-RGD-NGF nerve conduits to promote nerve regeneration and functional recovery. PLGL-RGD-NGF nerve conduits were tested in the rat sciatic nerve transection model. Rat sciatic nerves were cut off to form a 10 mm defect and repaired with the nerve conduits. All of the 32 Wistar rats were randomly divided into 4 groups: group PLGL-RGD-NGF, group PLGL-RGD, group PLGL and group autograft. At 3 months after surgery, the regenerated rat sciatic nerve was evaluated by footprint analysis, electrophysiology, and histologic assessment. Experimental data were processed using the statistical software SPSS 10.0. RESULTS: The sciatic function index value of groups PLGL-RGD-NGF and autograft was significantly higher than those of groups PLGL-RGD and PLGL. The nerve conduction velocities of groups PLGL-RGD-NGF and autograft were significantly faster than those of groups PLGL-RGD and PLGL. The regenerated nerves of groups PLGL-RGD-NGF and autograft were more mature than those of groups PLGL-RGD and PLGL. There was no significant difference between groups PLGL-RGD-NGF and autograft. CONCLUSIONS: PLGL-RGD-NGF nerve conduits are more effective in regenerating nerves than both PLGL-RGD nerve conduits and PLGL nerve conduits. The effect is as good as that of an autograft. This work established the platform for further development of the use of PLGL-RGD-NGF nerve conduits for clinical nerve repair.  相似文献   

4.
Background aimsAdipose-derived stem cells (ADSCs) have shown great promise in the regenerative repair of injured peripheral nerves. Magnetic resonance imaging (MRI) has provided attractive advantages in tracking superparamagnetic iron oxide nanoparticle (SPION)-labeled cells and evaluating their fate after cell transplantation. This study investigated the feasibility of the use of MRI to noninvasively track ADSCs repair of peripheral nerve injury in vivo.MethodsGreen fluorescent protein (GFP)-expressing ADSCs were isolated, expanded, differentiated into an SC-like phenotype (GFP-dADSCs) at early passages and subsequently labeled with SPIONs. The morphological and functional properties of the GFP-dADSCs were assessed through the use of immunohistochemistry. The intracellular stability, proliferation and viability of the labeled cells were evaluated in vitro. Through the use of a microsurgical procedure, the labeled cells were then seeded into sciatic nerve conduits in C57/BL6 mice to repair a 1-cm sciatic nerve gap. A clinical 3-T MRI was performed to investigate the GFP-dADSCs in vitro and the transplanted GFP-dADSCs inside the sciatic nerve conduits in vivo.ResultsThe GFP-dADSCs were efficiently labeled with SPIONs, without affecting their viability and proliferation. The labeled cells implanted into the mice sciatic nerve conduit exhibited a significant increase in axonal regeneration compared with the empty conduit and could be detected by MRI. Fluorescent microscopic examination, histological analysis and immunohistochemistry confirmed the axon regeneration and MRI results.ConclusionsThese data will elucidate the neuroplasticity of ADSCs and provide a new protocol for in vivo tracking of stem cells that are seeded to repair injured peripheral nerves.  相似文献   

5.
In this study, the right sciatic nerves of 40 rats were used to determine whether a nerve graft within a vein graft might accelerate and facilitate axonal regeneration, compared with a nerve graft alone. The animals were separated into four groups, as follows: group 1, sham control; group 2 (control), segmental nerve resection and no repair; group 3, segmental nerve resection and nerve grafting; group 4, segmental nerve resection and reconstruction with a nerve graft within a vein conduit graft. For all groups, sciatic functional indices were calculated before the operation and on postoperative days 7 and 90. On postoperative day 90, the sciatic nerves were reexposed and nerve conduction velocities were recorded. The sciatic nerves were harvested from all groups for counting of the myelinated axons with a stereological method. No statistically significant differences with respect to return of gait function, axon count, or nerve conduction were noted between groups 3 and 4 (p > 0.05). However, functional recovery in group 4 on postoperative day 90 was significant, compared with group 2 (p < 0.05); the recovery difference between groups 2 and 3 was not significant (p > 0.05). This study was not able to demonstrate any functional benefits with the use of a nerve graft within a vein graft, compared with standard nerve grafting.  相似文献   

6.
Abstract: Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase α subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of α1- and α3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.  相似文献   

7.
Neto HS  Sabha MJ  Marques MJ 《Cryobiology》2005,50(1):112-115
The development of alternatives to nerve autografts for nerve repair remains a goal of surgeons. Muscle basal lamina grafts have a potential use as bioprostheses, but it is not known whether such grafts retain their ability to support axonal regeneration following storage. In this study, we examined the effect of cryopreservation on the ability of muscle basal lamina grafts to repair nerve lesions. Basal lamina grafts were prepared and cryopreserved for different times and at different temperatures. Their grafting potential was evaluated by examining axonal regeneration after autografting to lesions in rat sciatic nerves. Muscle basal lamina grafts cryopreserved for up to 30 weeks at -20 and -40 degrees C were successfully used. There were no significant differences in the parameters of axonal regeneration between cryopreserved and non-cryopreserved grafts. In conclusion, muscle basal lamina autografts retain their potential usefulness for nerve repair after cryopreservation, providing a basis for the development of a bioprostheses from muscle basal lamina.  相似文献   

8.
Although the rat sciatic nerve model is used extensively in the investigation of repair techniques, and a variety of evaluation methods utilized to assess the results, a means to measure directly and accurately the return of function in these animals is absent. Histologic, histomorphometric, and electrophysiologic methods can be reliable indicators of nerve regeneration but do not correlate to functional recovery. The purposes of this study were to develop apparatus to continuously measure ground reaction forces (GRF) and use GRF parameters in the assessment of gait parameters in normal rats preoperatively and following peripheral nerve severance and repair. Three neurorrhaphy methods: direct sciatic nerve repair, direct tibial nerve repair and double sciatic nerve repair simulating autograft, as well as a non-repaired tibial nerve transection were evaluated. The testing apparatus was designed to measure the spontaneous and voluntary effort of the rat with objective data. Three orthogonal components - vertical, craniocaudal (braking and propulsion), and mediolateral - of the ground reaction force were measured. Preoperative data showed that vertical forces were comparable among the four limbs but propulsion and braking forces displayed significant differences. At 12 weeks, functional recovery was most evident in the direct tibial nerve repair group and absent in the non-repaired tibial defect group. Direct sciatic nerve repairs and sciatic nerve grafts resulted in lesser degrees of improvement. Results indicated that the propulsive force is the optimal GRF parameter for evaluating recovery of useful function.  相似文献   

9.
With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5?×?105 NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.  相似文献   

10.
目的:周围神经再生过程中巨噬细胞发挥了重要的作用,然而目前对于神经内内源性和外源性巨噬细胞的具体作用了解的却很少,因此本实验研究了小鼠坐骨神经损伤后早期再生过程中内源性和外源性巨噬细胞数量比例变化的情况,探索周围神经再生的规律。方法:移植CAG-EGFP转基因小鼠的全骨髓有核细胞到骨髓灭活野生型C5781/6小鼠体内建立嵌合体小鼠模型。待移植成功3个月后夹伤小鼠一侧坐骨神经,并在损伤后第2、7、14和28天取材、切片,使用巨噬细胞特异性抗体cD68进行免疫荧光染色,分析损伤神经段中内源性巨噬细胞(CD68+/EGFP-)、外源性巨噬细胞(CD68+/EGFP+)的数量及其比例变化情况。结果:①夹伤骨髓移植模型小鼠坐骨神经后,参与坐骨神经损伤修复的巨噬细胞可分为两类,即内源性巨噬细胞(CD68+/EGFP-)和外源性巨噬细胞(CD68+/EGFP+);②夹伤坐骨神经后,浸润的总巨噬细胞数量从第2天开始逐渐增加,到第14天达到高峰,约为正常情况下的60倍,随后逐渐减少;③起初外、内源性巨噬细胞间的比例是1:1,差值最大出现在损伤后第14天为4:l。结论:小鼠坐骨神经夹伤后,内外源性巨噬细胞共同参与了受损神经组织远心段的修复和再生过程,损伤初期发挥作用的主要是内源性巨噬细胞,随后大量浸润的外源性巨噬细胞占主导作用。本实验首次连续观察并定量分析了神经损伤后早期内源性和外源性巨噬细胞的数量改变,证实了瓦勒氏变性过程中内源性和外源性巨噬细胞在不同阶段对巨噬细胞总量的贡献作用。  相似文献   

11.
Protein synthesis in the nerve sheath of injured as well as intact mature and developing sciatic nerves from rat and rabbit was investigated by incubating segments of nerve with [35S]methionine in vitro. The composition of labeled proteins under the different conditions of nerve growth was analyzed by two-dimensional gel electrophoresis and fluorography. The expression of six secreted proteins in rat sciatic nerve with the apparent molecular weights of 70,000 (70 kD), 54,000 (54 kD), 51,000 (51 kD), 39,000 (39 kD), 37,000 (37 kD), and 30,000 (30 kD) was of particular interest because of the correlation of their synthesis and secretion with aspects of nerve growth and regeneration. The synthesis of the 37-kD protein was significantly stimulated during both sciatic nerve development as well as regeneration but not in the intact mature nerve. The expression of this protein appears to be regulated by signal(s) from the axon but not the target. The 70-kD protein was exclusively synthesized in response to axotomy, thus confining its role to some aspect(s) of nerve repair. In contrast, the 54- and 51-kD proteins were expressed in the intact mature nerve sheath. Their synthesis and release was rapidly inhibited upon axotomy but returned to normal or higher levels towards the end of sciatic nerve regeneration, suggesting a role in the maintenance of the integrity of the mature (nongrowing) rat nerve. The 39- and 30-kD proteins were only transiently synthesized within the first week after axotomy. Two proteins with the apparent molecular masses of 70 and 37 kD were synthesized in denervated rabbit sciatic nerve. The similar molecular weights, net charges, and time-courses of induction suggest a homology between these proteins in rabbit and rat, indicating common molecular responses of peripheral nerve sheath cells to axon injury in both mammalian species.  相似文献   

12.
Quantification of peripheral nerve regeneration in animal studies of nerve injury and repair by histologic, morphologic, and electrophysiologic parameters has been controversial because such studies may not necessarily correlate with actual nerve function. This study modifies the previously described sciatic functional index (SFI), tibial functional index (TFI), and peroneal functional index (PFI) based on multiple linear regression analysis of factors derived from measurements of walking tracks in rats with defined nerve injuries. The factors that contributed to these formulas were print-length factor (PLF), toe-spread factor (TSF), and intermediary toe-spread factor (ITF). It was shown that animals with selective nerve injuries gave walking tracks that were consistent, predictable, and based on known neuromuscular deficits. The new formula for sciatic functional index was compared with previously described indices. The sciatic functional index, tibial functional index, and peroneal functional index offer the peripheral nerve investigator a noninvasive quantitative assessment of hindlimb motor function in the rat with selective hindlimb nerve injury.  相似文献   

13.
神经生长因子与冻干异体神经桥接大鼠神经缺损的研究   总被引:3,自引:0,他引:3  
实验采用冻干处理的异体神经与外源性神经生长因子(NGF)结合来桥接大鼠的坐骨神经1.0cm的缺损。用雄性Wistar大鼠进行的四组实验结果表明:冻干处理的异体神经可降低其抗原性,但处理后并不损害雪旺氏细胞(SC)基底膜的完整性,在移植后可能成为轴突再生的通道和支架;外源性NGF与冻干神经结合形成的复合体,可为神经的再生提供一个较好的微环境,具有成为理想桥接材料的可能性  相似文献   

14.
Unilateral sciatic nerve compression (SNC) or complete sciatic nerve transection (CSNT), both varying degrees of nerve injury, induced activation of STAT3 bilaterally in the dorsal root ganglia (DRG) neurons of lumbar (L4-L5) as well as cervical (C6–C8) spinal cord segments. STAT3 activation was by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and was followed by their nuclear translocation. This is the first evidence of STAT3(S727) activation together with the well-known activation of STAT3(Y705) in primary sensory neurons upon peripheral nerve injury. Bilateral activation of STAT3 in DRG neurons of spinal segments anatomically both associated as well as non-associated with the injured nerve indicates diffusion of STAT3 activation inducers along the spinal cord. Increased levels of IL-6 protein in the CSF following nerve injury as well as activation and nuclear translocation of STAT3 in DRG after intrathecal injection of IL-6 shows that this cytokine, released into the subarachnoid space can penetrate the DRG to activate STAT3. Previous results on increased bilateral IL-6 synthesis and the present manifestation of STAT3 activation in remote DRG following unilateral sciatic nerve injury may reflect a systemic reaction of the DRG neurons to nerve injury.  相似文献   

15.
16.
During Wallerian degeneration of rat sciatic nerve, the expression of apolipoprotein E increases and apolipoprotein E-containing endoneurial lipoproteins accumulate in the distal nerve segment. In established primary cultures dissociated from dorsal root ganglia, Schwann cells and sensory neurons internalized rhodamine-labeled lipoproteins isolated from crushed rat sciatic nerve as well as low density lipoprotein (LDL) from human serum. The uptake of endoneurial lipoproteins could be inhibited by an excess of LDL or at low temperature (4 degrees C). After transection of nerve fibers in dorsal root ganglia explant cultures, the uptake of lipoproteins was markedly stimulated in Schwann cells that were in close proximity to degenerating neurites. A specific monoclonal antibody directed to the bovine LDL receptor (clone C7) was shown to cross-react with LDL receptor preparations of rat endoneurial cells. LDL receptor immunoreactivity was expressed by cell bodies and processes of cultured Schwann cells, sensory neurons, and fibroblasts from dorsal root ganglia. Incubation of Schwann cells and neurons with the LDL receptor antibody strongly inhibited the uptake of endoneurial lipoproteins. Our results provide direct evidence for the important role of the LDL receptor-mediated pathway to internalize endoneurial lipoproteins into Schwann cells and peripheral neurons required for reuse of cholesterol and other lipids in myelin and plasma membrane biogenesis during nerve repair.  相似文献   

17.
Neuroprotective effects of metformin have been increasingly recognized in both diabetic and non-diabetic conditions. Thus far, no information has been available on the potential beneficial effects of metformin on peripheral nerve regeneration in diabetes mellitus. The present study was designed to investigate such a possibility. Diabetes was established by a single injection of streptozotocin at 50 mg/kg in rats. After sciatic nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with metformin (30, 200 and 500 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. It was found that metformin significantly enhanced axonal regeneration and functional recovery compared to saline after sciatic nerve injury in diabetic rats. In addition, metformin at 200 and 500 mg/kg showed better performance than that at 30 mg/kg. Taken together, metformin is capable of promoting nerve regeneration after sciatic nerve injuries in diabetes mellitus, highlighting its therapeutic values for peripheral nerve injury repair in diabetes mellitus.  相似文献   

18.
It is now widely accepted that injured nerves, like any other injured tissue, need assistance from their extracellular milieu in order to heal. We compared the postinjury activities of thrombin and gelatinases, two types of proteolytic activities known to be critically involved in tissue healing, in nonregenerative (rat optic nerve) and regenerative (fish optic nerve and rat sciatic nerve) neural tissue. Unlike gelatinases, whose induction pattern was comparable in all three nerves, thrombin-like activity differed clearly between regenerating and nonregenerating nervous systems. Postinjury levels of this latter activity seem to dictate whether it will display beneficial or detrimental effects on the capacity of the tissue for repair. The results of this study further highlight the fact that tissue repair and nerve regeneration are closely linked and that substances that are not unique to the nervous system, but participate in wound healing in general, are also crucial for regeneration or its failure in the nervous system.  相似文献   

19.
The aim of the present study was to analyse electric resistivity at different ambient temperatures between 300 to 20K in the frog sciatic nerve and salmon sperm DNA. When the electrical contacts were leaned just into the sciatic nerve, an increase of the sciatic nerve resistivity was observed for 240 K < T < 300 K and a rise of electrical conductivity was apparent below 240 K. This dependence is generally associated with a semiconductor behaviour. Once the sciatic nerve temperature was driven below 250K, the resistivity abruptly decreased and then at temperatures lower than 234 K, it remained constant and close to one tenth of its ambient temperature value. By contrast, when the electrical contacts were leaned into Salmon sperm DNA, the resistivity remained constant between 300K to 20K, showing a high electrical stability at low temperature. Thus, we report the existence of a new form of electric conductivity in the sciatic nerve at low ambient temperature, which in turn has many electric similarities with inorganic or organic superconductors, whereas temperature failed to alter DNA electrical properties until 20K.  相似文献   

20.
This experiment quantitatively compared the human equivalent of a nerve repair following surgical division in the fetal, adult, and early childhood period of development using a rabbit as an experimental animal model. Twelve time-dated pregnant New Zealand White rabbits at 24 days' gestation (term = 31 days) underwent hysterotomy; one hind limb was delivered through the uterine opening. The sciatic nerve was divided and repaired by primary neurorrhaphy using two 11-0 epineural sutures. Sciatic nerve repair was also performed in 10 neonatal and 10 adult New Zealand White rabbits. Following repair, each group was assessed using electromyography examination, measuring distal motor latency and amplitude at 1, 2, 3, and 4 months postrepair. There was no difference in any of the groups in distal motor latency. The amplitude rose incrementally in all groups, and the fetal group had significantly higher amplitudes (p < 0.02) at 1, 2, 3, and 4 months in comparison with the adult group. There was no statistically significant difference between fetal and neonatal nerve repairs at any of the time periods. At the completion of the study, the nerve repair sites were harvested for histologic estimation of mean myelinated fiber density and fiber diameter distribution distal and proximal to the repair site. A greater percentage of myelinated axons crossed the repair site in the fetal group (83 percent) in comparison with the adult group (63 percent) (p < 0.03). Our study also demonstrated significant increases in the number of larger myelinated fibers crossing the repair site in comparison with the neonatal and adult groups (p < 0.04). This study found that fetal nerve healing following surgical repair is superior to that found in adult animals and results in a higher number of larger myelinated fibers crossing the repair site in comparison with adult and neonatal repairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号