首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival of rapidly frozen hatched mouse blastocysts   总被引:1,自引:0,他引:1  
The objective of the present study was to examine the effect of rapid freezing on the in vitro and in vivo survival of zona-pellucida-free hatched mouse blastocysts. Hatched blastocysts were rapidly frozen in a freezing medium containing either ethylene glycol (EG) or glycerol (G) in 1.5 M or 3 M concentration. Prior to freezing, embryos were equilibrated in the freezing medium for 2 min, 10 min, 20 min or 30 min at room temperature. To freeze them, embryos were held in liquid nitrogen vapour [approximately 1 cm above the surface of the liquid nitrogen (LN2)] for 2 minutes and then immersed into LN2. After thawing, embryos were transferred either to rehydration medium (DPBS + 10% foetal calf serum +0.5 M sucrose) for 10 minutes or rehydrated directly in DPBS supplemented with foetal calf serum. In vitro survival of embryos frozen with EG was higher than those frozen with G. The highest survival was obtained with 3 M EG and 2 min or 10 min equilibration prior to freezing, combined with direct rehydration after thawing. Frozen blastocysts developed into normal foetuses as well as unfrozen control ones did, with averages of 30% (control), 26% (EG) and 15% (G). The results show that hatching and hatched mouse blastocysts can be cryopreserved by a simple rapid freezing protocol in EG without significant loss of viability. Our data indicate that the mechanical protection of the zona pellucida is not needed during freezing in these stages.  相似文献   

2.
One-cell mouse embryos were frozen by direct plunging into liquid nitrogen (LN(2)) vapor after equilibration in 3 M ethylene glycol with 0.25 M sucrose (freezing medium) for 5 to 40 minutes. After thawing, the embryos were cultured in vitro and the effects of the equilibration period and dilution method were examined. No significant difference was observed in the in vitro survival of embryos when 0.5 or 1.0 M sucrose was used for the dilution of the cryoprotectant for each equilibration period. The highest survival rate (67.2%) was obtained when the embryos were equilibrated for 10 minutes, and the cryoprotectant diluted with either 0.5 or 1.0 M sucrose after thawing. Shorter (5 minutes) or prolonged (40 minutes) equilibration of embryos in the freezing medium yielded significantly lower survival rates. Dilution by direct transfer of the frozen-thawed embryos into PB1 resulted in lower survival rates than when 0.5 or 1.0 M sucrose was used. The in vitro development to the blastocyst stage of one-cell mouse embryos frozen after 10 minutes equilibration in the freezing medium and diluted after thawing in 0.5 M sucrose was significantly lower than the control (68.0 vs 92.7%). However, transfer of the blastocysts developing from frozen-thawed one-cell mouse embryos into the uterine horns of the recipients resulted in fetal development and implantation rates similar to the control.  相似文献   

3.
Preimplantation-stage mouse embryos suspended in dimethyl sulfoxide (DMSO) have been used as a model to study details of the response of a simple multicellular system to freezing and thawing. Rapid freezing to ?196 °C kills the embryos unless they have first been cooled very slowly to at least below ?50 °C. The survival of both 2-cell and 8-cell embryos has been found to depend as critically on the rate at which the frozen embryos were thawed as on the rate at which they were first frozen. The damaging consequences of thawing frozen embryos too rapidly have been shown to occur between ?70 and ?20 °C. Finally, the survival of embryos as a function of the time in DMSO prior to freezing and thawing has been compared with their volume changes as a function of time in DMSO. This comparison leads to the tentative conclusion that dimethyl sulfoxide need not permeate the embryos to protect them against freezing damage. Overall, the embryos' response to freezing and thawing is qualitatively similar to that displayed by many other cell types.  相似文献   

4.
Nowshari MA  Brem G 《Theriogenology》2000,53(5):1157-1166
Biological products like serum and BSA are routinely used in embryo freezing solutions. These products are undefined and can potentially expose the embryos to infectious agents. Therefore, this experiment was designed to evaluate in vitro and in vivo survival of mouse embryos frozen in solutions supplemented with a chemically defined macromolecule, polyvinyl alcohol (PVA). Morula-stage embryos from superovulated mice were collected, frozen by a rapid freezing procedure, and cryoprotectant diluted out (after thawing) in media supplemented with either 10% fetal calf serum (FCS), 0.1 mg/mL PVA, or a combination of 10% FCS and 0.1 mg/mL PVA. Frozen-thawed (good to excellent quality) and nonfrozen (control, collected in FCS supplemented medium) embryos were cultured in medium M16 (32) supplemented with either 4 mg/mL BSA or 0.1 mg/mL PVA for 72 h. Embryos frozen in solutions supplemented with FCS or PVA and nonfrozen embryos were transferred to pseudopregnant recipients. Recipients were humanly killed on Day 15 after transfer, and the rate of implantation and percentage of live fetuses were recorded. The supplementation of collection, freezing and cryoprotectant dilution solutions with FCS, PVA or FCS plus PVA did not influence (P > 0.05) the rate of survival and in vitro development of embryos to hatched/hatching blastocyst-stage. However, a higher (P < 0.01) in vitro development rate to hatching/hatched-stage was recorded when frozen-thawed embryos were cultured in medium supplemented with BSA than with PVA. There was no difference (P > 0.05) in the rate of implantation (68 vs 72%) or percentage of live fetuses (62 vs 60%) between pregnant recipients with embryos frozen in medium with FCS or PVA. The rate of implantation and development of embryos frozen in medium supplemented with PVA or FCS was comparable (P > 0.05) to that of nonfrozen embryos. It may be concluded that PVA can be substituted for FCS in medium for freezing mouse embryos; however, it can not be completely substituted for BSA in the in vitro culture of embryos to the hatched blastocyst stage.  相似文献   

5.
Embryo cryopreservation is an important tool to preserve endangered species. As a cryoprotectant for mouse oocytes, antifreeze protein from Anatolica polita (ApAFP914) has demonstrated utility. In the present study, the effects of controlled slow freezing and vitrification methods on the survival rate of sheep oocytes fertilized in vitro after freezing-thawing were compared. Different ApAFP914 concentrations were added to the vitrification liquid for exploring the effect of antifreeze protein on the warmed embryos. The results showed that the survival and hatching rates of in vitro derived embryos were significantly higher than that of the slow freezing method. Furthermore, among the cryopreserved embryos at different developmental stages, the survival and hatching rates of the expanded blastocyst were significantly higher than those of the blastocysts, early blastocysts and morula. The survival and the hatching rates of the fast-growing embryos were both significantly higher than that of the slow-growing embryos. Additionally, treatment of ApAFP914 (5–30 μg/mL) did not increase the freezing efficiency of the 6–6.5 d embryos. However, addition of 10 μg/mL of ApAFP914 significantly increased the hatching rate of slow-growing embryos. In conclusion, our study suggests that the vitrification is better than the slow freezing method for the conservation of in vitro sheep embryos, and supplementation of ApAFP914 (10 μg/mL) significantly increased the hatching rate of slow-growing embryos after cryopreservation.  相似文献   

6.
Cattle blastocysts were collected from 29 donors 7-8 days after estrus and frozen and stored in liquid nitrogen up to several months. Two procedures were used for freezing and thawing: After thawing, the embryos were cultured from 8 to 12 hours before transfer; 36% of the embryos continued normal development during culture; both procedures resulted in a high pregnancy rate (procedure A: 10 15 ; procedure B: 11 15 ) after single cervical transfer of the frozen thawed embryos which developed normaly in vitro . However the overall survival rate was low (25%) and varied between donors, indicating that progress must be made before the technique of freezing can be extended to applied conditions.  相似文献   

7.
The effect of rapid freezing and thawing on the survival of 2-cell rabbit embryos was examined. When embryos in 2.2 M-propanediol were directly plunged from room temperature to liquid nitrogen some of them survived after thawing (8%) but only if they had been pretreated by exposure to an impermeable solute, sucrose, that makes the blastomeres shrink osmotically before cooling. High survival (77-88%) in vitro was obtained when pretreated embryos were first held at -30 degrees C for 30-240 min before immersion into liquid nitrogen. Transfer of such frozen-thawed embryos gave a survival rate to live young similar to that obtained with controls (26% and 32% respectively). DMSO was less effective than propanediol; only 2 out of 38 sucrose-pretreated frozen-thawed embryos developed in vitro. The present work shows that a combination of partial dehydration of blastomeres at room temperature with their permeation by a cryoprotective agent offers a simple method for successful rapid freezing and thawing of rabbit embryos.  相似文献   

8.
Three different methods of cryopreservation viz., conventional slow freezing, vitrification and open pulled straw vitrification were compared for their ability to support post thaw in vitro and in vivo development of rabbit embryos. Morula stage rabbit embryos were collected from super-ovulated donor does. They were randomly allocated to different freezing methods and stored up to 3 months in liquid nitrogen. After thawing and removal of cryoprotectants, embryos exhibiting intact zona pellucida and uniform blastomeres were considered suitable for in vitro culture and/or transfer. Three to five cryopreserved embryos placed in approximately 1 ml of culture medium (TCM 199 supplemented with foetal calf serum and antibiotics) were incubated for up to 72 h under humidified atmosphere of 5% CO2 in air at 39 degrees C. Development to hatched blastocyst stage was considered the initial indicator of success of cryopreservation of embryos. Of the embryos cryopreserved by programmed freezing, open pulled straw vitrification, vitrification-55 h pc and vitrification-72 h pc 55, 71, 17 and 48%, respectively, developed into hatched blastocysts. Similarly 19, 29, and 4% of embryos cryopreserved by programmed freezing, open pulled straw vitrification and vitrification -72 h pc developed into live offspring on transfer to recipient does. This is the first report on open pulled straw vitrification of rabbit embryos. Present results, suggest that (a) open pulled straw vitrification supports better in vitro survival of frozen thawed rabbit morulae; (b) both programmed freezing and OPS are similar but superior to vitirification in supporting in vivo survival of frozen thawed rabbit embryos.  相似文献   

9.
Successful cryopreservation is essential for a large-scale dispersal of bovine in vitro produced (IVP) embryos that have been shown to be more sensitive to cryopreservation than their in vivo counterparts. On the other hand, the use of animal proteins in freezing media increases sanitary risks. We first replaced animal proteins, such as bovine serum albumin (BSA) in the freezing medium by plant-derived peptides (vegetal peptones). A batch of wheat peptones was selected after a preliminary experiment showing the absence of toxicity of concentrations<18 mg/mL on in vitro bovine blastocysts. Increasing concentrations of peptones were then added in the freezing medium. The surviving and hatching rates were not affected by comparison with those observed with BSA. No significant difference was observed between groups either for the total number of cells or for the ratio ICM/Total cell, nor for the rate of apoptosis in surviving embryos. When embryos were cryopreserved in 1.8 mg/mL peptone, the hatching rate and embryo quality as assessed at 48 h post-thawing were not significantly different from those of unfrozen embryos. In a second experiment two additives were added in this animal protein-free freezing medium containing 1.8 mg/mL peptones. No beneficial effect of adding 1 mg/mL sodium hyaluronate or 100 microM beta-mercaptoethanol was observed on embryo survival or quality. In conclusion, we have demonstrated that vegetal peptones can replace BSA in freezing media without affecting blastocyst survival and quality.  相似文献   

10.
Bovine morulae and blastocysts were either produced in vitro through maturation, fertilization and culture of immature oocytes recovered from slaughterhouse-derived ovaries, collected in vivo or obtained after 24 h in vitro culture of in vivo collected embryos. The morulae and blastocysts were classified into four categories of embryo quality and two stages of embryonic development. Embryos were frozen by a controlled freezing method using 10% glycerol as a cryoprotectant. The ability of individual embryos to withstand freeze/thawing was measured immediately before and after cryopreservation by changes in CO2 production from (U-14C)glucose during a 2 h incubation period in a non-invasive closed system immediately before and after cryopreservation. Post-thaw survival was assessed by development in vitro during a 48 h culture period. Survival rates and oxidative metabolism after freeze/thawing were similar in embryos of the two developmental stages. However, after freeze/thawing, the rate of CO2 production of in vitro produced embryos was reduced to one half of their pre-freeze levels and was associated with poor survival rates. In vivo collected embryos had a significantly better tolerance to freezing and higher survival rates. However, when in vivo embryos were exposed to in vitro culture conditions, the rates of CO2 production and survival were significantly reduced. Pre-freeze embryo quality affected post-thaw in vitro development and metabolic activity markedly in embryos produced in vitro or pre-exposed to in vitro culture conditions. While there was no relationship between pre-freeze levels of CO2 production and post-thaw in vitro embryo development, all embryos which developed in vitro after freezing/thawing retained at least 58% of the pre-freeze levels of CO2 production regardless of their origin. Results of the present study indicate that embryos produced in vitro or pre-exposed to in vitro culture conditions are more sensitive to cryo-injury. This sensitivity is affected by embryo quality and is similarly reflected at the biochemical level. Determination of oxidative metabolism offers a feasibility for selection of viable morulae/blastocysts after freezing/thawing.  相似文献   

11.
Cryopreservation of oyster (Crassostrea gigas) embryos   总被引:1,自引:0,他引:1  
Gwo JC 《Theriogenology》1995,43(7):1163-1174
Several critical variables associated with successful cryopreservation of oyster embryos (Crassostrea gigas) were examined. These were 1) embryo developmental stage, 2) kind and concentration of cryoprotectant, 3) equilibration time, and 4) freezing rate. The percentage of survival was scored as the number of recovered embryos that swam actively 12 h after thawing and had developed into veliger stage. The oyster embryos became increasingly susceptible to the cryoprotectants as the concentration was increased and the equilibration time was lengthened. The stage of development appears to be a critical factor for survival of oyster embryos, with trochophore stage embryos more resistant than morula and gastrula stages embryos to cryoprotectant exposure and having better surviving after freezing. The optimum cryoprotectant concentration for the trochophore embryos differed markedly from the morula stage. Cryopreservation of fertilized eggs (2 to 8 cells) was unsuccessful. Varying degrees of success were achieved using gastrula- and trochophore-stage embryos. Maximum survival was obtained when trochophore embryos incubated in 10% propylene glycerol-artificial sea water were cooled at -2.5 degrees C/min to -30 degrees C and were then directly placed into liquid nitrogen. The results showed a clear effect of the stage of development on survival.  相似文献   

12.
Ninety four cow embryos recovered on day 7-8 after onset of oestrus were frozen by the "Two Step" freezing procedure: 49 in pyrex glass ampules and 45 in .25 ml French semen straws. The overall survival rate was 33.7% (36.2% for embryos frozen in glass ampules; 31.1% for embryos frozen in plastic straws). 45.2% of transferred embryos resulted in pregnancies (35.7% after freezing in glass ampules v.s 52.9% after freezing in plastic straws).  相似文献   

13.
Two experiments were designed to determine the effects of stage of development on Day 7 of in vitro-produced bovine embryos on survival after deep freezing and on sex ratio. Bovine IVF embryos and bovine oviductal epithelial cells (BOEC) were co-cultured in TCM-199 and, on Day 7 after insemination (Day 0), were morphologically evaluated and divided into groups by developmental stage. In Experiment 1, embryos classified as early blastocysts, blastocysts and full-expanding blastocysts were randomly subdivided into 2 groups by replicate: 50% of the embryos were placed immediately in a new BOEC co-culture (fresh group), while the other 50% were frozen, thawed and placed in a new BOEC co-culture (frozen/thawed group). Embryos were frozen in 1.5 M glycerol using a standard slow cooling technique. Fresh and frozen/thawed embryos were compared for survival rate (embryos hatching/hatched) in BOEC co-culture over the following 3 d (i.e., Days 7 to 10). The overall survival of the 425 embryos (early to full-expanding blastocysts) was 33% and was not different between fresh (35%) and frozen/thawed (30%) embryos. Survival of embryos cultured fresh or after freezing/thawing was higher for full-expanding blastocysts than for early blastocysts or for blastocysts, both of which were not different. In Experiment 2, all frozen/thawed embryos used in Experiment 1 plus all morulae and hatched blastocysts collected and frozen on Day 7 without regard to survival were sexed utilizing the polymerase chain reaction (PCR) technique. Sex of the embryos, by stage of development on Day 7, was determined in order to compare the rate of development in BOEC co-culture with the sex ratio (percentage of males). A total of 235 embryos was sex-determined with an overall percentage of males of 51%, which was not different from the expected 1:1 sex ratio. Both full-expanding blastocysts and hatched blastocysts had a significantly higher (P < 0.05) proportion of males (68 and 100%, respectively), while morulae had a significantly lower proportion of males (24%). Early blastocysts and blastocysts did not differ from a 1:1 sex ratio. The results indicate that male embryos develop faster in vitro than female embryos. The higher survival rate of full-expanding blastocysts after freezing/thawing, and the production of a higher number of males than females among embryos of this developmental stage suggest that a greater number of male fetuses may result from the successful freezing and transfer of in vitro-produced bovine embryos.  相似文献   

14.
The replacement of biological products in media for the collection, culture and freezing of mammalian embryos was studied. To test the hypothesis that chemically defined surfactants can replace bovine serum albumin (BSA) or serum in embryo media, morula-stage mouse and cattle embryos were collected, cultured, and/or frozen in the surfactant compound, VF5. Collection efficiency of mouse and cattle embryos did not differ whether the medium contained serum or surfactant. In addition, morula-stage mouse and cattle embryos developed and hatched at similar rates in culture media containing either BSA or surfactant. Although the freeze/thaw survival and development in culture of bovine embryos was not significantly different in any of the media, there was a significantly lower hatching rate of mouse embryos frozen with serum or surfactant than with cryoprotectant alone or with cryoprotectant plus albumin-free serum. However, the absence of serum or surfactant in embryo freezing media resulted in embryo loss, presumably due to stickiness. The data suggest that serum can be replaced by a chemically defined surfactant in mouse and cattle embryo transfer systems for the collection, culturing and freezing of embryos. It is likely that the beneficial effects of serum are due to its surfactant properties.  相似文献   

15.
This study evaluated the effect of freezing-thawing procedures on the viability of sheep embryos cryopreserved at various developmental stages. The survival rates of frozen-thawed embryos were compared with non-frozen counterparts. Embryos were recovered from the oviduct and uterus, at different days of the early luteal phase, and were classified at six different developmental stages: 2- to 4-cell (n = 72), 5- to 8-cell (n = 73), 9- to 12-cell (n = 70), early morulae (n = 42), morulae (n = 41), and blastocyst (n = 70). For each early cleavage stage and blastocysts, approximately half of the embryos, were frozen immediately by slow freezing with an ethylene glycol-based solution. The remaining embryos were cultured to the hatched blastocyst stage. All morulae and compact morulae were frozen after recovery with the same protocol. Cryoprotectants were removed using 1M sucrose solution, and then warmed the embryos were cultured to the hatched stage in a standardized in vitro culture. Embryo developmental stage had a significant effect on the ability to hatch following freezing (P<0.0001). The cryotolerance of the embryos fitted a regression (r2 = 0.908), increasing linearly from 2- to 4-cell embryos (17.1%) to morula stage (46.3%) and in a quadratic regression from the morula to the blastocyst stage (83.7%). Frozen early cleavage stage embryos had a significantly lower viability than their fresh counterparts (23.1 vs 83.1%; P<0.0001), with a similar rate of viability between fresh or frozen blastocysts (92.5 vs 83.7%). In conclusion, early sheep embryos are very sensitive to freezing per se and the survival rates following conventional freezing improve as embryo developmental stage progresses.  相似文献   

16.
Survival of IVF-derived bovine embryos of different ages and stages of development, produced in 2 different co-culture systems and frozen in 2 different cryoprotectants, was investigated. In vitro-derived bovine embryos (n = 5,525) were utilized to study survival following exposure to cryoprotectants and after freezing. Survival of the frozen embryos was based on blastocyst re-expansion 24 h and hatching 72 h after thawing. There was no difference in survival when embryos were exposed to either glycerol (Gly) or ethylene glycol (EG) for 10 or 40 min with the cryoprotectant diluted with or without freezing. In 2 of 3 experiments in which a comparison was possible, more blastocysts frozen in 1.4 M glycerol than in 1.5 M ethylene glycol survived. Addition of 0.25 M sucrose to 1.5 M ethylene glycol in the freezing solution did not improve embryo survival. More blastocysts frozen on Day 7 of in vitro culture survived than those frozen on Day 6 or Day 8. On Days 6, 7 and 8, embryos in the most advanced stage of development survived better than those at less advanced stages. Post-thaw survival did not differ for embryos produced in co-culture with Buffalo Rat Liver (BRL) cells with either Menezo B2 Medium or Tissue Culture Medium 199 and frozen in 1.4 M glycerol.  相似文献   

17.
The toxic effects of sucrose and the conditions of in-straw glycerol removal after freezing and thawing were studied using Day-3 mouse embryos. At 20 degrees C, exposure to less than or equal to 1.0 M-sucrose for periods up to 30 min had no adverse effects on freshly collected embryos. At 25 and 36 degrees C, however, greater than or equal to 1.0 M-sucrose significantly reduced the developmental potential (P less than 0.001). In the freezing experiments the embryos were placed in 0.5 ml straws containing 40 microliters freezing medium separated by an air bubble from 440 microliters sucrose solution. The straws were frozen rapidly in the vapour about 1 cm above the surface of liquid nitrogen. The post-thaw viability was substantially better after sucrose dilution at 20 degrees C than at 36 degrees C. Mixing the freezing medium with the sucrose diluent immediately after thawing further improved the rate of survival relative to mixing just before freezing (P less than 0.001). The best survival was obtained when the freezing medium contained 3.0 M-glycerol + 0.25 M-sucrose; it was mixed with the diluent after thawing and the glycerol was removed at 20 degrees C. Under such conditions the sucrose concentration in the diluent had no significant effect on the rate of development (0.5 M, 69%; 1.0 M, 73%; 1.5 M, 64%). The results show that during sucrose dilution the temperature should be strictly controlled and suggest that intracellular and extracellular concentrations of glycerol are important in the cryoprotection of embryos.  相似文献   

18.
Experiments with mouse embryos were designed to assess the feasibility of freezing embryos after DNA microinjection. One-cell pronuclear stage mouse embryos were microinjected with cloned deoxyribonucleic acid (DNA) and cultured in vitro to the late eight-cell stage. Microinjected and matched control embryos were frozen and stored in liquid nitrogen. Following thawing, embryos were cultured for 8 h and transferred to recipient females. In a separate set of experiments, embryos were transferred to recipients immediately following DNA microinjection. Control (uninjected) embryos developed to the late eight-cell stage significantly better than surviving microinjected embryos. Of the embryos thawed, 76% of the microinjected and 60% of the control embryos survived to be transferred to recipients. Progeny were obtained with similar survival rates from both groups following embryo transfer with transgenic mice identified among the progeny from microinjected embryos. Mouse embryos can be microinjected with DNA, cultured in vitro, frozen, thawed, transferred to recipients and transgenic progeny can be obtained.  相似文献   

19.
This study examined whether the viability, determined in vitro, of DNA-injected bovine embryos produced in vitro was affected by freezing, and if the frozen embryos developed to term following transfer to recipients. In vitro fertilized zygotes were injected with the pBL1 gene and then co-cultured with mouse embryonic fibroblasts (MEF) in CR1aa medium. Embryos were prepared for cryopreservation by exposure to a 10% (v/v) glycerol solution, loaded into 0.25 ml straws and then frozen by conventional slow freezing. Thawing was by rapid warming in water (37 degrees C) and embryos were rehydrated in PBS diluents of 6%, 3% and 0% (v/v) glycerol supplemented with 0.25 M sucrose and 0.5% (w/v) BSA. In Experiment 1, blastocysts that developed from DNA-injected embryos were individually classified into three morphological groups and three stages of development prior to freezing. DNA-injected blastocysts of excellent quality at freezing showed a higher survival rate (78.8+/-10.6%) after thawing than those of good (60. 9+/-16.4%) or fair (12.5+/-5.9%) quality (P<0.05). Post-thaw survival rate, judged in vitro, increased with more advanced stage of blastocyst development at freezing (early 48.8+/-15.9%, mid 52. 1+/-12.6% and expanded 71.2+/-1.1; P<0.05). In Experiment 2, the frozen/thawed embryos were transferred to recipients to examine in vivo viability. Following transfer of one or two embryos per recipient, pregnancy rates at 60 days of gestation were 13.6% (13/96) for frozen embryos and 26.5% (43/162) for fresh embryos (P<0. 05). Of the 12 live calves born from the frozen/thawed embryos, two males (18.3%) were transgenic. None of the live-born calves derived from fresh embryos exhibited the transgene. One of transgenic bulls did not produce transgenic sperm. Three out of 23 calves (13.0%) produced from cows inseminated with semen of the other bull were transgenic, suggesting that this animal was a germ-line mosaic. These studies indicated that the viability of in vitro produced, DNA-injected bovine blastocysts was affected by freezing and by both the quality and stage of development of the embryo prior to freezing. The generation of transgenic cattle demonstrates that it is feasible to freeze DNA-injected, in vitro produced embryos.  相似文献   

20.
We examined possible genotype effects on the survival of 8- to 16-cell mouse embryos isolated from four inbred strains (C57BL/6N, BALB/cAnN, DBA/2N, and C3H/HeN), a outbred stock (ICR), and various crosses after cryopreservation by vitrification or conventional slow freezing using glycerol solutions. The rates of in vitro development of C57BL/6N, BALB/cAnN, C3H/HeN, and ICR embryos to expanded blastocysts ranged from 86% to 94% after slow freezing and 85% to 97% after vitrification. The cryopreservation method did not significantly influence in vitro embryo survival after thawing (P >0.05). Although genotype significantly influenced the in vitro survival of embryos (P = 0.008), this presumably resulted from an increased difficulty in assessing the quality grade of C3H/HeN embryos prior to cryopreservation. The rates in vivo development of C57BL/6N, BALB/cAnN, C3H/HeN, DBA/2N, and ICR embryos to normal day 18–19 fetuses ranged from 19% to 64% after slow freezing and from 18% to 63% after vitrification. The in vivo development of cryopreserved embryos was significantly influenced by cryopreservation method and genotype (P = 0.01 and P = 0.001, respectively). Vitrification yielded significantly higher rates of in vivo development than that after slow freezing (P > 0.05). In vivo development rates of DBA/2N and ICR♀ X B6D2F1 ♂ embryos after cryopreservation were significantly higher than that of embryos from BALB/cAnN and C3H/HeN mice (P < 0.05). These results indicate that parental genotype exerts little or no effect on the ability of embryos to develop in vitro after vitrification or slow freezing. Differences in the ability of cryopreserved embryos to develop normally in vivo may reflect inherent genotype related differences in their post-implantation developmental potential and not their sensitivity to cryoinjury. © 1995 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号