首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agrobacterium tumefaciens growing in liquid attaches to the surface of tomato and Arabidopsis thaliana roots, forming a biofilm. The bacteria also colonize roots grown in sterile quartz sand. Attachment, root colonization, and biofilm formation all were markedly reduced in celA and chvB mutants, deficient in production of cellulose and cyclic beta-(1,2)-D-glucans, respectively. We have identified two genes (celG and cell) in which mutations result in the overproduction of cellulose as judged by chemical fractionation and methylation analysis. Wild-type and chvB mutant strains carrying a cDNA clone of a cellulose synthase gene from the marine urochordate Ciona savignyi also overproduced cellulose. The overproduction in a wild-type strain resulted in increased biofilm formation on roots, as evaluated by light microscopy, and levels of root colonization intermediate between those of cellulose-minus mutants and the wild type. Overproduction of cellulose by a nonattaching chvB mutant restored biofilm formation and bacterial attachment in microscopic and viable cell count assays and partially restored root colonization. Although attachment to plant surfaces was restored, overproduction of cellulose did not restore virulence in the chvB mutant strain, suggesting that simple bacterial binding to plant surfaces is not sufficient for pathogenesis.  相似文献   

2.
Tumorigenic (CG49) and nontumorigenic (CG484) strains of Agrobacterium tumefaciens bv. 3 attached to grape roots at a higher level than did a nonpectinolytic mutant of CG49 (CG50) or a tumorigenic strain of A. tumefaciens bv. 1 (CG628). Strains attached equally well to wounded and unwounded grape roots. Strains responded differently to pea plants in that biovar 3 strains consistently attached to unwounded roots at a lower level than they did to wounded roots, whereas CG628 attached equally well regardless of wounding. The lowest levels of attachment to pea roots were consistently observed for CG50. Population curves were calculated for the strains inoculated into wound sites on grape and pea roots. A. tumefaciens bv. 3 wild-type strains developed greater populations at wound sites on grape roots after 100 h (resulting in root decay) than did CG50 or CG628. Population curves for strains at wound sites on pea roots were different from those on grape roots. There were no significant differences in populations after 100 h, and no strains caused root decay. No differences in the chemotaxis of wild-type and mutant A. tumefaciens bv. 3 strains towards grape roots, crown pieces, or root extracts were observed, but the biovar 1 strain, CG628, always migrated the greatest distance towards all substrates. Polygalacturonase production may affect attachment to grape roots and multiplication of A. tumefaciens bv. 3 at wound sites and thus be associated with the specificity of the bacterium for grape.  相似文献   

3.
During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were attached individually to the plant cell surface. The wild-type bacteria became surrounded by fibrils within 2 h after attachment. No fibrils were seen with the cellulose-minus mutants. Prolonged incubation of wild-type A. tumefaciens with carrot cells resulted in the formation of large aggregates of bacteria, bacterial fibrils, and carrot cells. No such aggregates were formed after the incubation of carrot cells with cellulose-minus A. tumefaciens. The absence of cellulose fibrils also caused an alteration in the kinetics of bacterial attachment to carrot cells. Cellulose synthesis was not required for bacterial virulence; the cellulose-minus mutants were all virulent. However, the ability of the parent bacterial strain to produce tumors was unaffected by washing the inoculation site with water, whereas the ability of the cellulose-minus mutants to form tumors was much reduced by washing the inoculation site with water. Thus, a major role of the cellulose fibrils synthesized by A. tumefaciens appears to be anchoring the bacteria to the host cells, thereby aiding the production of tumors.  相似文献   

4.
A pectin-enriched soluble cell wall fraction (CWF) prepared from suspension cultured tomato cells inhibits binding of Agrobacterium tumefaciens to these cells. It was hypothesized that the CWF contains the plant surface binding site for A. tumefaciens (NT Neff, AN Binns 1985 Plant Physiol 77: 35-42). Experiments described here demonstrate that tomato CWF inhibited tumor formation on potato slices and Agrobacterium binding to intact tomato cells in a dose-dependent fashion. Boiling the fraction reduced both its binding and tumor inhibitory activities. Tumor inhibitory activity was titrated out by increased concentrations of bacterial inocula with no inhibition apparent at 1 × 108 bacteria per milliliter. These results indicate that a tomato CWF is enriched for a putative A. tumefaciens binding site which may also be involved in tumor formation in potato.  相似文献   

5.
Agrobacterium tumefaciens chvB mutants are unable to produce beta-1,2 glucan. They are nonattaching and avirulent and show reduced motility at room temperature. At lower temperatures (16 degrees C), chvB mutants became virulent on Bryophyllum daigremontiana and Lycopersicon esculentum and were able to attach to L. esculentum, Arabidopsis thaliana, Daucus carota, and Tagetes erecta roots. The mutant bacteria also recovered wild-type motility at lower temperatures. Two other nonattaching mutants of A. tumefaciens, AttR and AtrA, were unaffected by the lowered temperature, remaining nonattaching and avirulent.  相似文献   

6.
Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium''s gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum''s sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production.  相似文献   

7.
Bacterial wilt, caused by Ralstonia solanacearum , is responsible for severe losses in tomato crops in the world. In the present study, the effect of temperature, cultivars of tomato, injury of root system and inoculums load of R. solanacearum to cause bacterial wilt disease under control conditions was undertaken. Three strains UTT-25, HPT-3 and JHT-5 of R. solanacearum were grown at 5–40?°C in vitro to study, the effect of temperature on the growth of bacteria and maximum growth was found at 30?°C after 72?h in all the strains. Twenty-one days old seedlings of two cultivars of tomato i.e. N-5 (moderately resistant) and Pusa Ruby (highly susceptible) were transplanted into the pots and inoculated with R. solanacearum strain UTT-25 (5 × 108?cfu/ml), mechanically injured and uninjured roots of the plant. The plants were allowed to grow at 20, 25, 30 and 35?°C at National Phytotron Facility, IARI, New Delhi to study the effect of temperature on intensity of bacterial wilt disease. Maximum wilt disease intensity was found 98.73 and 95.9 % in injured roots of Pusa Ruby and N-5 cultivars of tomato at 35?°C on 11th days of inoculation, respectively. However, no wilt disease was observed in both the cultivars at 20?°C up to 60?days. For detection of R. solanacearum from asymptomatic tomato plants, hrpB-based sequence primers (Hrp_rs2F and Hrp_rs2R) amplified at 323?bp was used in bio-PCR to detect R. solanacearum from crown, mid part of stem and upper parts of the plant. Another experiment was conducted to find out the inoculum potential of R. solanacearum strain UTT-25 to cause bacterial wilt in susceptible cultivar Pusa Ruby. The bacteria were inoculated at concentration of bacterial suspension 10 to 1010?cfu/ml in injured and uninjured roots of the plants separately and injured root accelerated wilt incidence and able to cause wilt disease 63.3% by 100?cfu/ml of R. solanacearum, while no disease appeared at 10?cfu/ml on the 11th day of inoculation in injured and uninjured roots of the plant.  相似文献   

8.
Higher populations of Meloidogyne incognita larvae and Pratylenchus penetrans were recovered from soil treated with carbofuran 10 and 15 days after treatment, respectively, than were recovered from untreated control soil. The number of P. penetrans, however, was lower 50 days after treatment, and symptoms developed only occasionally on the root systems of host plants. Populations of Tylenchorhynchus claytoni inoculated at different distances from the base of corn seedlings growing in carbofuran-treated soil did not move toward the plant, whereas they were attracted in untreated soil from a distance of 12 cm. P. penetrans moved at random in treated agar medium when inoculations occurred 4 cm away from the root tips of tomato seedlings under aseptic conditions. Those nematodes that reached the roots were never observed feeding during a 20-day observation period. Specimens of P. penetrans placed on the developing roots moved at random and never penetrated. In contrast, numerous P. penetrans penetrated roots of seedlings growing in untreated medium.  相似文献   

9.
This study was to determine whether Arthrobotrys flagrans, A. oligospora, and Meria coniospora would control the root-knot nematode Meloidogyne hapla on alfalfa and tomato. Alfalfa seeds were coated with a fungus-rye powder in 2% cellulose and were planted in infested soil. Three-week-old seedlings from seed treated with M. coniospora had 60% and 58% fewer galls in two experiments than did seedlings from untreated seeds. Numbers of J2 in the soil were not reduced. Plant growth did not improve. When seed of tomato were coated with M. coniospora and planted in M. hapla-infested soil, roots had 34% fewer galls and 47% fewer J2 in the soil at 28 days. After 56 days there was no reduction in J2 numbers. Plant growth did not improve. When roots of tomato transplants were dusted with M. coniospora fungus-rye powder or sprayed with a spore suspension before planting in M. hapla-infested soil, 42% and 35%, respectively, fewer galls developed in 28 days on treated roots than on roots not treated with fungus. The numbers of J2 extracted from roots or recovered from soil were not reduced, however, and plant growth did not improve.  相似文献   

10.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

11.
An antibiotic-resistant strain of Pseudomonas fluorescens, that suppresses take-all of wheat, was used to study the distribution of the bacteria on seminal roots of wheat after being introduced onto seeds. Cells of P. fluorescens were isolated from the entire length of the root, and density of the introduced bacteria declined with the distance from the base of the root. Maximum populations of 105 to 106 CFU and 103 to 105 CFU per cm of root were detected on sections of roots near the seed and root tip, respectively. The introduced bacteria competed well with indigenous bacteria, comprising at least 25% of the fluorescent pseudomonads detected by plate counts for 48 days after planting.  相似文献   

12.
Early (4 h) adsorption of Rhizobium meliloti L5-30 in low numbers to alfalfa roots in mineral solution was examined for competition with other bacterial strains. All tested competitor strains decreased the adsorption of L5-30 by extents which depended on the strain and its concentration. The decrease of adsorption by R. meliloti competitors (all of them infective in alfalfa) was nearly complete at saturation (97 to 99% decrease). All other heterologous rhizobia and Agrobacterium tumefaciens at saturating concentrations (106 to 107 per ml) decreased adsorption of L5-30 only partially, less than 60%. The differential effects of homologous and heterologous competitors indicate that initial adsorption of R. meliloti to the root surface of its host occurs in symbiont-specific as well as nonspecific modes and suggest the existence of binding sites on roots which are highly selective for the specific microsymbiont in the presence of other heterologous bacteria even in very unfavorable (less than 10−4) symbiont-competitor concentration ratios.  相似文献   

13.
Ann G. Matthysse 《Protoplasma》1994,183(1-4):131-136
Summary Wild-typeAgrobacterium tumefaciens bind to carrot suspension culture cells. Avirulent strain NT 1 did not bind to carrot cells when they were incubated together in Murashige and Skoog medium. Conditioned medium was prepared by incubatingA. tumefaciens virulent strain C 58 with carrot cells and removing the bacteria and carrot cells using filter sterilization. This conditioned medium promoted the binding of NT 1 to carrot cells. Conditioned medium did not promote the nonspecific attachment ofEscherichia coli to carrot cells. These results suggest that when wild-typeA. tumefaciens are incubated with plant host cells, some substance(s) involved in bacterial attachment are released into the medium. Filter-sterilized medium from the incubation of the nonattachingchvB mutant A 1045 with carrot cells promoted the attachment of strain NT 1 even though A 1045 bacteria did not bind to the carrot cells. However, filter-sterilized medium from the incubation of the non-attachingatt mutant Att-B 123 with carrot cells was unable to promote the binding of strain NT 1. This suggests that nonattaching mutants ofA. tumefaciens can be divided into two groups on the basis of the properties of the substances released into the medium when the bacteria are incubated with carrot cells.Abbreviations MS Murashige and Skoog tissue culture medium Dedicated to the memory of Professor John G. Torrey  相似文献   

14.
15.
Indigenous bacteria from poplar tree (Populus canadensis var. eugenei ‘Imperial Carolina’) and southern California shrub rhizospheres, as well as two tree-colonizing Rhizobium strains (ATCC 10320 and ATCC 35645), were engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the tom locus into the chromosome. The poplar and Rhizobium recombinant bacteria degraded trichloroethylene at a rate of 0.8 to 2.1 nmol/min/mg of protein and were competitive against the unengineered hosts in wheat and barley rhizospheres for 1 month (colonization occurred at a level of 1.0 × 105 to 23 × 105 CFU/cm of root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as large as 79% ± 12% of all rhizosphere bacteria after 28 days (0.2 × 105 to 31 × 105 CFU/cm of root). Furthermore, five of the most competitive poplar recombinants (e.g., Pb3-1 and Pb5-1, which were identified as Pseudomonas sp. strain PsK recombinants) retained the ability to express TOM for 29 days as 100% ± 0% of the recombinants detected in the poplar rhizosphere expressed TOM constitutively.  相似文献   

16.
Tomato transformation is conventionally performed using Agrobacterium tumefaciens-infected cotyledons. Here, we propose a simple procedure for tomato transformation, by which A. tumefaciens cells were smeared onto floral buds of a tomato plant using a paintbrush. Sufficient numbers of fruits were obtained from them, although the smearing of an excess number of A. tumefaciens cells led to an adverse effect on the plant growth. Progeny plants were screened by growth on a kanamycin-containing selection medium plate. The nptII gene was detected in 10 plants among 1,599 progenies. These transformants were derived from fruits other than those obtained from the smeared buds. This suggested that A. tumefaciens cells moved to the buds located near the smeared buds and caused the transformation event. Our findings suggest that this procedure can be used for the introduction of a foreign gene into plant cells.  相似文献   

17.
Adherence of Agrobacterium tumefaciens to suspension-cultured tomato cells has been characterized using a quantitative binding assay. Saturable binding of radiolabeled A. tumefaciens to plant cells resulted in 100 to 300 bacteria bound per cell. Specificity of A. tumefaciens binding was also inferred from two additional results: (a) an initial incubation of plant cells with A. tumefaciens reduced subsequent binding of radiolabeled A. tumefaciens by 60% to 75%; (b) tomato cells bound less than three E. coli per cell. Protease treatment of plant cells had no effect on subsequent bacterial binding, but prior treatment of plant cells with pectinolytic enzymes increased binding 2- to 3-fold. Pectin-enriched and neutral polymer-enriched fractions were obtained from tomato cell walls. The soluble pectin-enriched fraction inhibited binding of bacteria to plant cells by 85% to 95%, whereas the neutral polymer fraction only partially inhibited binding. Preliminary characterization of the activity showed it is heat stable, partially inactivated by protease treatment, and substantially inactivated by acid hydrolysis.  相似文献   

18.
Agrobacterium tumefaciens and Agrobacterium rhizogenes are soil bacteria which transfer DNA (T-DNA) to plant cells. Two Agrobacterium strains, each with a different T-DNA, can infect plants and give rise to transformed tissue which has markers from both T-DNAs. Although marker genes from both T-DNAs are in the tissue, definitive proof that the tissue is a cellular clone and that both T-DNAs are in a single cell is necessary to demonstrate cotransformation. We have transferred two distinguishable T-DNAs, carried on binary vectors in separate Agrobacterium rhizogenes strains, into tomato cells and have recovered hairy roots which received both T-DNAs. Continued expression of marker genes from each T-DNA in hairy roots propagated from individual root tips indicated that both T-DNAs were present in a single meristem. Also, we have transferred the two different T-DNAs, carried on identical binary vector plasmids in separate Agrobacterium tumefaciens strains, into tobacco cells and recovered plants which received both T-DNAs. Transformed plants with marker genes from each T-DNA were outcrossed to wild-type tobacco plants. Distribution of the markers in the F1 generation from three cotransformed plants of independent origin showed that both T-DNAs in the plants must have been present in the same cell and that the T-DNAs were genetically unlinked. Cotransformation of plant cells with T-DNAs from two bacterial strains and subsequent segregation of the transferred genes should be useful for altering the genetic content of higher plants.  相似文献   

19.
Bacteria adsorbed in low numbers to alfalfa or clover root surfaces were counted after incubation of seedlings in mineral solution with very dilute inocula (less than 105 bacteria per ml) of an antibiotic-resistant strain under defined conditions. After specified washing, bacteria which remained adsorbed to roots were selectively quantitated by culturing the roots embedded in yeast extract-mannitol-antibiotic agar and counting the microcolonies along the root surface; the range was from about 1 bacterium per root (estimated as the most probable number) to 50 bacteria per cm of root length (by direct counting). This simple procedure can be used with any pair of small-rooted plant and antibiotic-resistant bacterium, requires bacterial concentrations comparable to those frequently found in soils, and yields macroscopic localization and distribution data for adsorbed bacteria over the root surface. The number of adsorbed bacteria was proportional to the size of the inoculum. One of every four Rhizobium meliloti cells adsorbed in very low numbers to alfalfa roots resulted in the formation of a nodule. Overall adsorption of various symbiotic and nonsymbiotic bacterial strains to alfalfa and clover roots did not reflect the specificities of these legumes for their respective microsymbionts, R. meliloti and R. trifolii.  相似文献   

20.
The effects of tabtoxinine-β-lactam (T-β-L) on nitrate uptake and glutamine synthetase (GS) and nitrate reductase (NR) activities in roots of Avena sativa seedlings were determined. Seven-day-old oat seedlings placed in a 10 mm KNO3 and 0.5 mm T-β-L solution for 24 hours took up T-β-L and lost approximately 90% of their root GS activity. [3H]-T-β-L taken up by roots of seven-day-old oat seedlings was associated with GS immunoprecipitated from the extract of these roots. Total nitrate uptake and in vivo NR activity were decreased approximately 50% in the T-β-L treated roots. However, T-β-L uptake did not affect the induction phases of nitrate uptake or reduction, nor did it inhibit in vitro NR activity. Thus, the decrease in nitrate uptake and reduction is a secondary effect of T-β-L action. Roots of seven-day-old oat seedlings were inoculated with Pseudomonas syringae pv tabaci (Tox+) and the pathogen population in the rhizosphere was estimated by dilution plate count; 6 × 1013 bacteria were recovered after 3 days, as compared to the original inoculation with 7 × 109 bacteria, indicating a significant growth of the pathogen in the rhizosphere. The bacteria recovered from the rhizosphere caused chlorosis in tobacco leaves and produced T-β-L in culture; 1 × 1014 bacteria were recovered from roots of seedlings inoculated with P. syringae pv tabaci (Tox−) using the same inoculation and assay procedure as for the pv tabaci (Tox+). Extracts of surface-sterilized roots previously inoculated with P. syringae pv tabaci (Tox+) did not produce viable bacterial cultures when plated out on a complete medium. Oat seedlings growing in sand culture and inoculated with P. syringae pv tabaci (Tox+) had developed chlorosis, and root GS activity had declined to less than 10% of controls after 3 days. Conversely, seedlings inoculated with P. syringae pv tabaci (Tox−) never developed chlorosis and maintained normal levels of GS activity. All oat plants inoculated with P. syringae pv tabaci (Tox+) died within 7 days after inoculation as compared to the plants inoculated with P. syringae pv tabaci (Tox−) which grew to maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号