首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses of barley (Hordeum vulgare L.) lines with rebuilt chromosomes 5, 6 and 7 to reduced nitrogen nutrition were evaluated in juvenile growth stages. The material included two series of duplications (D) produced in the short arm of chromosome 6 and of chromosome 7, and in the long arm of chromosome 5 and of chromosome 6; their parental translocation lines (T) - from which analyzed duplications were derived and a standard karyotype cv. Bonus as a control. The translocation lines have break points located in 6S and 7S, or 5L and 6L. Only the lines with duplicated segments of the short arms of satellited (6 and 7) chromosomes exhibited an improved tolerance to reduced nitrogen supply. No changes relative to cv. Bonus were observed in the T-lines. More tolerant D-lines showed lower stimulation of the root development. Obtained results suggests that the adaptability factors for the low N tolerance at the vegetative growth stage of barley are located in the short arms of 6 and 7 chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Four of 1,240 cultivated barley lines collected from different regions of the world and 3 of 120 lines of wild barley, Hordeum spontaneum C. Koch, carry spontaneous reciprocal translocations. Break-point positions and rearrangements in the interchanged chromosomes have been examined by both test crosses and Giemsa banding techniques. The four translocation lines in cultivated barley were all of Ethiopian origin and have the same translocation involving chromosomes 2 and 4. The breakpoints are at the centromeres of both chromosomes, resulting in interchanged chromosomes 2S+4S and 2L+4L (S=short arm, L=long arm). A wild barley line, Spont.II, also has translocated chromosomes 2 and 4 which are broken at the centromeres. The resultant chromosomes are, however, 2S+4L and 2L+4S. Another wild barley line, Spont.S-4, has interchanged chromosomes with breakpoints in the short arm of chromosome 3 and the long arm of chromosome 7. In addition, this line has a paracentric inversion in the short arm of chromosome 7 that includes a part of nucleolar constriction, resulting in two tandemly arranged nucleolar constrictions. The third wild barley line, Spont.S-7, has interchanged chromosomes with breakpoints in the long arms of both chromosomes 3 and 6. The translocated chromosome 3 is metacentric and the translocated chromosome 6 has a long arm similar in length to the long arm of chromosome 7.  相似文献   

3.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

4.
This paper describes the genetic control of two new water-soluble proteins in barley. Water-soluble proteins (WSPs) of mature barley seed form part of the albumin/globulin class of seed proteins. They can be extracted from hand-milled grain with water, though some WSPs are more efficiently extracted with a solution of 10 mM dithiothreitol. Polymorphisms for WSPs were detected in isoelectric focusing gels incorporating various ampholine combinations. Two new controlling genes (Wsp4 andWsp5) have been identified and located using wheat/barley chromosome addition lines and barley doubled haploids.Wsp4 is located on chromosome 2 (2H), andWsp5 was found to be tightly linked toWsp2 on the long arm of chromosome 7 (5HL). Segregation of a sixth gene (Wsp6) is also described, but this has not been mapped. The results are discussed with respect to other previously mappedWsp loci.This work was funed by the Scottish Office of Agriculture and Fisheries Department and the Agricultural and Food Research Council.  相似文献   

5.
Malting quality is genetically determined by the complex interaction of numerous traits which are expressed prior to and, in particular, during the malting process. Here, we applied the advanced backcross quantitative trait locus (AB-QTL) strategy (Tanksley and Nelson, Theor Appl Genet 92:191–203, 1996), to detect QTLs for malting quality traits and, in addition, to identify favourable exotic alleles for the improvement of malting quality. For this, the BC2DH population S42 was generated from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). A QTL analysis in S42 for seven malting parameters measured in two different environments yielded 48 QTLs. The exotic genotype improved the trait performance at 18 (37.5%) of 48 QTLs. These favourable exotic alleles were detected, in particular, on the chromosome arms 3HL, 4HS, 4HL and 6HL. The exotic allele on 4HL, for example, improved α-amylase activity by 16.3%, fermentability by 0.8% and reduced raw protein by 2.4%. On chromosome 6HL, the exotic allele increased α-amylase by 16.0%, fermentability by 1.3%, friability by 7.3% and reduced viscosity by 2.9%. Favourable transgressive segregation, i.e. S42 lines exhibiting significantly better performance than the recurrent parent Scarlett, was recorded for four traits. For α-amylase, fermentability, fine-grind extract and VZ45 20, 16, 2 and 26 S42 lines, respectively, surpassed the recurrent parent Scarlett. The present study hence demonstrates that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve malting quality traits.  相似文献   

6.
Summary The hordein storage proteins of barley (Hordeum vulgare L.) are of intense interest due to their genetic diversity and prominence and impact on the industrial and agricultural uses of the seed. Two major hordein loci have been previously mapped on chromosome 5 (Hor-1 and Hor-2 encoding the C and B hordeins, respectively). A third major locus, Hor-3, which codes for D hordein, has been located in the centromeric region of chromosome 5, probably on the long arm. Two allelic variants with apparent molecular weights of 83,000 and 91,000 and similar isoelectric points of 8.0 comprise the products of this locus in the barley varieties Advance and Triple Awned Lemma. The D hordein examined is similar in molecular weight and isoelectric point to the high molecular weight (HMW) glutenin proteins encoded by the 1B chromosome of wheat (Triticum aestivum L.)Scientific Paper No. 6229. College of Agriculture Research Center, Washington State University, Pullman, Washington, Project Number 1006. This investigation supported in part by funds provided to Washington State University through the NIH Biomedical Research Support Grant  相似文献   

7.
Construction of an RFLP map of barley   总被引:12,自引:0,他引:12  
Summary In order to construct an RFLP map of barley, two populations were analyzed using 251 genomic and cDNA markers: one population comprised 71 F1 antherderived double haploid (DH) individuals of an intraspecific cross (IGRI x FRANKA), and the other 135 individuals of an interspecific F2/F3 progeny (VADA x H. spontaneum). The distribution of nonrepetitive clones over the seven barley chromosomes revealed a maximum for chromosome 2H and a minimum for 6H. The polymorphism of the interspecific progeny (76%) clearly exceeded that of the intraspecific progeny (26%) although, based on their pedigrees, IGRI and FRANKA are only distantly related. The contribution of individual chromosomes of the DH parents to the overall polymorphism varied between 8% and 50%. A significant portion (44% versus 10% of the interspecific progeny) of the markers mapped on the DH offspring showed distorted segregation, caused mainly by the prevalence of variants originating from the parent that better responded to in vitro culture (IGRI). In contrast to the interspecific map, probes displaying skewed segregation were clustered on the DH map on discrete segments. The colinear arrangement of both maps covers a distance of 1,453 cM and identifies regions of varying map distances.  相似文献   

8.
To enhance the marker density of existing genetic maps of barley (Hordeum vulgare L.), a new set of microsatellite markers containing dinucleotide motifs was developed from genomic clones. Out of 254 primer pairs tested, a total of 167 primer pairs were classifed as functional in a panel of six barley cultivars and three H. spontaneum accessions, and of those, 127 primer pairs resulting in 133 loci were either mapped or located onto chromosomes. The polymorphism information content (PIC) ranged from 0.05 to 0.94 with an average of 0.60. The number of alleles per locus varied from 1 to 9. On average, 3.9 alleles per primer pair were observed. The RFLP frameworks of two previously published linkage maps were used to locate a total of 115 new microsatellite loci on at least one mapping population. The chromosomal assignment of 48 mapped loci was corroborated on a set of wheat-barley chromosome addition lines; 18 additional loci which were not polymorphic in the mapping populations were assigned to chromosomes by this method. The microsatellites were located on all seven linkage groups with four significant clusters in the centromeric regions of 2H, 3H, 6H and 7H. These newly developed microsatellites improve the density of existing barley microsatellite maps and can be used in genetic studies and breeding research.Communicated by G. Wenzel  相似文献   

9.
Powdery mildew, caused byEryisphe graminis f. sp.hordei, is one of the most important diseases of barley (Hordeum vulgare). A number of loci conditioning resistance to this disease have been reported previously. The objective of this study was to use molecular markers to identify chromosomal regions containing genes for powdery mildew resistance and to estimate the resistance effect of each locus. A set of 28 F1 hybrids and eight parental lines from a barley diallel study was inoculated with each of five isolates ofE. graminis. The parents were surveyed for restriction fragment length polymorphisms (RFLPs) at 84 marker loci that cover about 1100 cM of the barley genome. The RFLP genotypes of the F1s were deduced from those of the parents. A total of 27 loci, distributed on six of the seven barley chromosomes, detected significant resistance effects to at least one of the five isolates. Almost all the chromosomal regions previously reported to carry genes for powdery mildew resistance were detected, plus the possible existence of 1 additional locus on chromosome 7. The analysis indicated that additive genetic effects are the most important component in conditioning powdery mildew resistance. However, there is also a considerable amount of dominance effects at most loci, and even overdominance is likely to be present at a number of loci. These results suggest that quantitative differences are likely to exist among alleles even at loci which are considered to carry major genes for resistance, and minor effects may be prevalent in cultivars that are not known to carry major genes for resistance.  相似文献   

10.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

11.
Summary Seven complete chromosomes and nine telocentric chromosomes in telotrisomics of barley (Hordeum vulgare L.) were identified and designated by an improved Giemsa N-banding technique. Karyotype analysis and Giemsa N-banding patterns of complete and telocentric chromosomes at somatic late prophase, prometaphase and metaphase have shown the following results: Chromosome 1 is a median chromosome with a long arm (Telo 1L) carrying a centromeric band, while short arm (Telo 1S) has a centromeric band and two intercalary bands. Chromosome 2 is the longest in the barley chromosome complement. Both arms show a centromeric band, an intercalary band and two faint dots on each chromatid at middle to distal regions. The banding pattern of Telo 2L (a centromeric and an intercalary band) and Telo 2S (a centromeric, two intercalary and a terminal band) corresponded to the banding pattern of the long and short arm of chromosome 2. Chromosome 3 is a submedian chromosome and its long arm is the second longest in the barley chromosome complement. Telo 3L has a centromeric (fainter than Telo 3S) and an intercalary band. It also shows a faint dot on each chromatid at distal region. Telo 3S shows a dark centromeric band only. Chromosome 4 is the most heavily banded one in barley chromosome complement. Both arms showed a dark centromeric band. Three dark intercalary bands and faint telomeric dot were observed in the long arm (4L), while two dark intercalary bands in the short arm (4S) were arranged very close to each other and appeared as a single large band in metaphase chromosomes. A faint dot was observed in each chromatid at the distal region in the 4S. Chromosome 5 is the smallest chromosome, which carries a centromeric band and an intercalary band on the long arm. Telo 5L, with a faint centromeric band and an intercalary band, is similar to the long arm. Chromosomes 6 and 7 are satellited chromosomes showing mainly centromeric bands. Telo 6S is identical to the short arm of chromosome 6 with a centromeric band. Telo 3L and Telo 4L were previously designated as Telo 3S and Telo 4S based on the genetic/linkage analysis. However, from the Giemsa banding pattern it is evident that these telocentric chromosomes are not correctly identified and the linkage map for chromosome 3 and 4 should be reversed. One out of ten triple 2S plants studied showed about 50% deficiency in the distal portion of the short arm. Telo 4L also showed a deletion of the distal euchromatic region of the long arm. This deletion (32%) may complicate genetic analysis, as genes located on the deficient segment would show a disomic ratio. It has been clearly demonstrated that the telocentric chromosomes of barley carry half of the centromere. Banding pattern polymorphism was attributed, at least partly, to the mitotic stages and differences in techniques.Contribution from the Department of Agronomy and published with the approval of the Director of the Colorado State University Experiment Station as Scientific Series Paper No. 2730. This research was supported in part by the USDA/SEA Competitive Research Grant 5901-0410-9-0334-0, USDA/ SEA-CSU Cooperative Research Grant 12-14-5001-265 and Colorado State University Hatch Project. This paper was presented partly at the Fourth International Barley Genetics Symposium, Edinburgh, Scotland, July 22–29, 1981  相似文献   

12.
The objective of the present study was to identify favourable exotic Quantitative Trait Locus (QTL) alleles for the improvement of agronomic traits in the BC2DH population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). QTLs were detected as a marker main effect and/or a marker × environment interaction effect (M × E) in a three-factorial ANOVA. Using field data of up to eight environments and genotype data of 98 SSR loci, we detected 86 QTLs for nine agronomic traits. At 60 QTLs the marker main effect, at five QTLs the M × E interaction effect, and at 21 QTLs both the effects were significant. The majority of the M × E interaction effects were due to changes in magnitude and are, therefore, still valuable for marker assisted selection across environments. The exotic alleles improved performance in 31 (36.0%) of 86 QTLs detected for agronomic traits. The exotic alleles had favourable effects on all analysed quantitative traits. These favourable exotic alleles were detected, in particular on the short arm of chromosome 2H and the long arm of chromosome 4H. The exotic allele on 4HL, for example, improved yield by 7.1%. Furthermore, the presence of the exotic allele on 2HS increased the yield component traits ears per m2 and thousand grain weight by 16.4% and 3.2%, respectively. The present study, hence, demonstrated that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits.  相似文献   

13.
Summary The nar2 locus that codes for a protein involved in molybdenum cofactor function in nitrate reductase and other molybdoenzymes was mapped to barley chromosome 7. F2 genotypic data from F3 head rows indicated nar2 is located 8.4±2.1 and 23.0± 4.6 cm from the narrow leaf dwarf (nld) and mottled seedling (mt2) loci, respectively. This locates the nar2 locus at 54.7±3.1 cm from the short-haired rachilla (s) locus near the centromere of chromosome 7. Close linkage of nar2 with DDT resistance (ddt) and high lysine (lys3) loci was detected but could not be quantified due to deviations from the individual expected 121 segregations for the ddt and lys3 genes. Southern blots of wheat-barley addition lines probed with a nitrate reductase cDNA located the NADH : nitrate reductase structural gene, nar1, to chromosome 6.Scientific Paper No. 7762. College of Agriculture and Home Economics Research Center, Washington State University, Project No. 0745. This investigation was supported in part by United States Department of Agriculture Grant No. 86-CRCR-1-2004  相似文献   

14.
15.
Summary Numerical and structural chromosome variation was analysed in dividing protoplasts isolated from suspension cells of barley. Five cell lines exhibited distribution patterns in chromosome number with different peaks and ranges. Embryogenic/morphogenic cell lines showed a peak at 2n = 14 (ca. 50%) after 6–7 months in culture, while older non-embryogenic cell lines had peaks at aneuploid or polyploid chromosome numbers. Culture duration had a clear effect on numerical and structural chromosome variation in embryogenic cell lines. With ageing of the cultures chromosome variation accumulated and the proportion of 2n = 14 cells decreased. The effect of protoplast isolation and culture on chromosome variation was examined; more cells with normal chromosome sets (12%) were maintained in protoplast-derived colonies than in source suspension cells (4%) of the same culture age.Abbreviations DC Dicentric - F fragment - T telocentric  相似文献   

16.
The association of ecological factors and allozymic markers of wild barley,Hordeum spontaneum, with genotypes varying in resistance to 3 cultures of the pathogenErysiphe graminis hordei, which incites the disease powdery mildew of barley, were explored theoretically and practically. The study involved 275 accessions comprising 16 populations largely representing the ecological range ofH. spontaneum in Israel. From earlier studies of allozymic variation and disease resistance it now becomes apparent that genetic polymorphisms for resistance toE. graminis hordei are structured geographically, and are predictable by climatic as well as allozymic variables. Three-variable combinations of temperature and water factors explain significantly 0.32 of the spatial variance in disease resistance between localities. Also, several allozyme genotypes, singly or in combination, are significantly associated with disease resistance. A high correlation was found between the standard deviation of infection types of the culture of the pathogen from Israel, and allozymic polymorphism,P (rs = 0.86, p < 0.001). Consequently, the IsraelH. spontaneum populations, growing in the center of diversity of the species, contain large amounts of unexploited disease resistance polymorphism. These could be effectively screened and utilized for producing resistant barley varieties by using ecological factors and allozymic variants as guidelines.  相似文献   

17.
Graduated concentrations of chemomutagens ethylmethanesulphonate (EMS), N-nitroso-N-methylurea (MNU) and N-nitroso-N-ethylurea (ENU) and one concentration of sodium azide (NaN3) were used to treat seeds of spring barley cultivars Heris, Tolar, Granát and Novum. Androgenesis in vitro was induced in mutagenised plant populations. The significant stimulation effect of mutagenic treatment on the mean number of androgenic anthers from all 36 treated variants was registered in 17 variants, on the mean number of regenerated plants in 15 variants and on the mean number of regenerated plants per androgenic anthers in seven variants only. Genotypes with a lower androgenic response were relatively more stimulated. Evaluation was made of the frequency of chlorophyll mutations within androgenic regenerants and in seed progeny of androgenic donors. Androgenesis was also induced in vital chlorophyll mutants and in the variants where the mutagen treatment resulted in less than 50% survival of the donor plants. Ratios between frequency of haploids and spontaneous dihaploids were similar in green and in albino androgenic plants. The results confirm that in barley it is possible to enhance the frequency of in vitro pollen embryogenesis by mutagenic treatment of seeds.  相似文献   

18.
Summary The karyotype of 82 regenerated plants from callus cultures of interspecific hybrids between cultivated barley (Hordeum vulgare L.) and seven polyploid wild barley species was examined by C-banding or Feulgen staining. The karyotypic changes observed in 46 plants included aneuploidy, double haploidy, amphidiploidy, deletions, inversions, extra C-bands, and extra euchromatic segments. Apparently, chromosome 5, 6, and 7 of H. vulgare were more frequently exposed to elimination or structural change than the other chromosomes of this species. Irradiation of calli seemed to enhance the occurrence of karyotypic variants.  相似文献   

19.
Hordeum bulbosum represents the secondary gene pool of barley and constitutes a potential source of various disease resistances in barley breeding. Interspecific crosses of H. vulgare × H. bulbosum resulted in recombinant diploid-barley progeny with immunity to BaMMV after mechanical inoculation. Tests on fields contaminated with different viruses demonstrated that resistance was effective against all European viruses of the soil-borne virus complex (BaMMV, BaYMV-1, -2). Genetic analysis revealed that resistance was dominantly inherited. Marker analysis in a F5 mapping family was performed to map the introgression in the barley genome and to estimate its size after several rounds of recombination. RFLP anchor-marker alleles indicative of an H. bulbosum introgression were found to cover an interval 2.9 cM in length on chromosome 6HS. The soil-borne virus resistance locus harboured by this introgressed segment was designated Rym14Hb. For marker-assisted selection of Rym14Hb carriers, a diagnostic codominant STS marker was derived from an AFLP fragment amplified from leaf cDNA of homozygous-resistant genotypes inoculated with BaMMV.Communicated by F. Salamini  相似文献   

20.
Recombinant chromosome substitution lines (RCSLs) were developed in BC3 generation to introduce segments of a wild barley strain ‘H602’ (Hordeum vulgare ssp. spontaneum) into a barley cultivar ‘Haruna Nijo’ (H. vulgare ssp. vulgare) genetic background. One hundred thirty four RCSLs were genotyped by 25 SSR and 60 EST markers, which were localized on a linkage map of doubled haploid lines (DHLs) derived from the same cross combination. Graphical genotyping revealed that the observed average substitution ratio of H602 segment (12.9%) agreed with the expected substitution ratio (12.5%), and a minimum set of 19 RCSLs represented the entire H602 genome. Phenotypes of five qualitative and nine quantitative traits were scored in both the RCSLs and DHLs. Five qualitative traits were localized as morphological markers on the linkage map of the DHLs, and these molecular markers were aligned on the respective chromosomal regions in the RCSLs. Simple and composite interval mapping procedures detected a total of 18 and 24 QTLs for nine qualitative traits on the RCSLs and DHLs, respectively. Several QTLs were localized at coincident or very close regions on both linkage maps. In spite of general inferior agronomic performances in wild barley, several H602 QTL alleles showed agronomically positive effects. These RCSLs should contribute to substitution of favorable alleles from wild barley into cultivated barley. These RCSLs are also available as sources of near isogenic lines, with which we can apply advanced genetic analysis methods such as isolation of QTLs and detection of epistatic interactions among QTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号