首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stretch-induced expression of vascular endothelial growth factor (VEGF) is thought to be important in mediating the exacerbation of diabetic retinopathy by systemic hypertension. However, the mechanisms underlying stretch-induced VEGF expression are not fully understood. We present novel findings demonstrating that stretch-induced VEGF expression in retinal capillary pericytes is mediated by phosphatidylinositol (PI) 3-kinase and protein kinase C (PKC)-zeta but is not mediated by ERK1/2, classical/novel isoforms of PKC, Akt, or Ras despite their activation by stretch. Cardiac profile cyclic stretch at 60 cpm increased VEGF mRNA expression in a time- and magnitude-dependent manner without altering mRNA stability. Stretch increased ERK1/2 phosphorylation, PI 3-kinase activity, Akt phosphorylation, and PKC-zeta activity. Signaling pathways were explored using inhibitors of PKC, MEK1/2, and PI 3-kinase; adenovirus-mediated overexpression of ERK, PKC-alpha, PKC-delta, PKC-zeta, and Akt; and dominant negative (DN) mutants of ERK, PKC-zeta, Ras, PI 3-kinase and Akt. Although stretch activated ERK1/2 through a Ras- and PKC classical/novel isoform-dependent pathway, these pathways were not responsible for stretch-induced VEGF expression. Overexpression of DN ERK and Ras had no effect on VEGF expression in these cells. In contrast, DN PI 3-kinase as well as pharmacologic inhibitors of PI 3-kinase blocked stretch-induced VEGF expression. Although stretch-induced PI 3-kinase activation increased both Akt phosphorylation and activity of PKC-zeta, VEGF expression was dependent on PKC-zeta but not Akt. In addition, PKC-zeta did not mediate stretch-induced ERK1/2 activation. These results suggest that stretch-induced expression of VEGF involves a novel mechanism dependent upon PI 3-kinase-mediated activation of PKC-zeta that is independent of stretch-induced activation of ERK1/2, classical/novel PKC isoforms, Ras, or Akt. This mechanism may play a role in the well documented association of concomitant hypertension with clinical exacerbation of neovascularization and vascular permeability.  相似文献   

2.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K.  相似文献   

3.
In this study we have investigated the molecular mechanisms of insulin and insulin-like growth factor-I (IGF-I) action on vascular endothelial growth factor (VEGF) gene expression. Treatment with insulin or IGF-I for 4 h increased the abundance of VEGF mRNA in NIH3T3 fibroblasts expressing either the human insulin receptor (NIH-IR) or the human IGF-I receptor (NIH-IGFR) by 6- and 8-fold, respectively. The same elevated levels of mRNA were maintained after 24 h of stimulation with insulin, whereas IGF-I treatment further increased VEGF mRNA expression to 12-fold after 24 h. Pre-incubation with the phosphatidylinositol 3-kinase inhibitor wortmannin abolished the effect of insulin on VEGF mRNA expression in NIH-IR cells but did not modify the IGF-I-induced VEGF mRNA expression in NIH-IGFR cells. Blocking mitogen-activated protein kinase activation with the MEK inhibitor PD98059 abolished the effect of IGF-I on VEGF mRNA expression in NIH-IGFR cells but had no effect on insulin-induced VEGF mRNA expression in NIH-IR cells. Expression of a constitutively active PKB in NIH-IR cells induced the expression of VEGF mRNA, which was not further modified by insulin treatment. We conclude that VEGF induction by insulin and IGF-I occurs via different signaling pathways, the former involving phosphatidylinositol 3-kinase/protein kinase B and the latter involving MEK/mitogen-activated protein kinase.  相似文献   

4.
The matrix metalloproteinase (MMP)-2 has been recognized as a major mediator of basement membrane degradation, angiogenesis, tumor invasion, and metastasis. The factors that regulate its expression have not, however, been fully elucidated. We previously identified the type I insulin-like growth factor (IGF-I) receptor as a regulator of MMP-2 synthesis. The objective of the present study was to investigate the signal transduction pathway(s) mediating this regulation. We show here that in Lewis lung carcinoma subline H-59 cells treated with IGF-I (10 ng/ml), the PI 3-kinase (phosphatidylinositol 3'-kinase) /protein kinase B (Akt) and C-Raf/ERK pathways were activated, and MMP-2 promoter activity, mRNA, and protein synthesis were induced. MMP-2 induction was blocked by the PI 3-kinase inhibitors LY294002 and wortmannin, by overexpression of a dominant-negative Akt or wild-type PTEN (phosphatase and tensin homologue deleted on chromosome 10), and by rapamycin. In contrast, a MEK inhibitor PD98059 failed to reduce MMP-2 promoter activation and actually increased MMP-2 mRNA and protein synthesis by up to 30%. Interestingly, suppression of PI 3-kinase signaling by a dominant-negative Akt enhanced ERK activity in cells stimulated with 10 ng/ml but not with 100 ng/ml IGF-I. Furthermore, at the higher (100 ng/ml) IGF-I concentration, C-Raf and ERK, but not PI 3-kinase activation, was enhanced, and this resulted in down-regulation of MMP-2 synthesis. This effect was reversed in cells expressing a dominant-negative ERK mutant. The results suggest that IGF-I can up-regulate MMP-2 synthesis via PI 3-kinase/Akt/mTOR (the mammalian target of rapamycin) signaling while concomitantly transmitting a negative regulatory signal via the Raf/ERK pathway. The outcome of IGF-IR (the receptor for IGF-I) activation may ultimately depend on factors, such as ligand bioavailability, that can shift the balance preferentially toward one pathway or the other.  相似文献   

5.
We examined effects of two insulin-like growth factors, insulin and insulin-like growth factor-I (IGF-I), against apoptosis, excitotoxicity, and free radical neurotoxicity in cortical cell cultures. Like IGF-I, insulin attenuated serum deprivation-induced neuronal apoptosis in a dose-dependent manner at 10-100 ng/mL. The anti-apoptosis effect of insulin against serum deprivation disappeared by addition of a broad protein kinase inhibitor, staurosporine, but not by calphostin C, a selective protein kinase C inhibitor. Addition of PD98059, a mitogen-activated protein kinase kinase (MAPKK) inhibitor, blocked insulin-induced activation of extracellular signal-regulated protein kinases (ERK1/2) without altering the neuroprotective effect of insulin. Cortical neurons underwent activation of phosphatidylinositol (PI) 3-kinase as early as 1 min after exposure to insulin. Inclusion of wortmannin or LY294002, selective inhibitors of PI 3-K, reversed the insulin effect against apoptosis. In contrast to the anti-apoptosis effect, neither insulin nor IGF-I protected excitotoxic neuronal necrosis following continuous exposure to 15 microM N-methyl-D-aspartate or 40 microM kainate for 24 h. Surprisingly, concurrent inclusion of 50 ng/mL insulin or IGF-I aggravated free radical-induced neuronal necrosis over 24 h following continuous exposure to 10 microM Fe2+ or 100 microM buthionine sulfoximine. Wortmannin or LY294002 also reversed this potentiation effect of insulin. These results suggest that insulin-like growth factors act as anti-apoptosis factor and pro-oxidant depending upon the activation of PI 3-kinase.  相似文献   

6.
The paradigm for activation of Ras and extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase by extracellular stimuli via tyrosine kinases, Shc, Grb2, and Sos does not encompass an obvious role for phosphoinositide (PI) 3-kinase, and yet inhibitors of this lipid kinase family have been shown to block the ERK/MAP kinase signalling pathway under certain circumstances. Here we show that in COS cells activation of both endogenous ERK2 and Ras by low, but not high, concentrations of epidermal growth factor (EGF) is suppressed by PI 3-kinase inhibitors; since Ras activation is less susceptible than ERK2 activation, PI 3-kinase-sensitive events may occur both upstream of Ras and between Ras and ERK2. However, strong elevation of PI 3-kinase lipid product levels by expression of membrane-targeted p110alpha is by itself never sufficient to activate Ras or ERK2. PI 3-kinase inhibition does not affect EGF-induced receptor autophosphorylation or adapter protein phosphorylation or complex formation. The concentrations of EGF for which PI 3-kinase inhibitors block Ras activation induce formation of Shc-Grb2 complexes but not detectable EGF receptor phosphorylation and do not activate PI 3-kinase. The activation of Ras by low, but mitogenic, concentrations of EGF is therefore dependent on basal, rather than stimulated, PI 3-kinase activity; the inhibitory effects of LY294002 and wortmannin are due to their ability to reduce the activity of PI 3-kinase to below the level in a quiescent cell and reflect a permissive rather than an upstream regulatory role for PI 3-kinase in Ras activation in this system.  相似文献   

7.
8.
Previously, we reported that somatostatins (SS) inhibit organismal growth by reducing hepatic growth hormone (GH) sensitivity and by inhibiting insulin-like growth factor I (IGF-I) production. In this study, we used hepatocytes isolated from rainbow trout to elucidate the mechanism(s) associated with the extrapituitary growth-inhibiting actions of SS. SS-14, a predominant SS isoform, stimulated tyrosine phosphorylation of several endogenous proteins, including extracellular signal-regulated kinase (ERK), a member the mitogen-activated protein kinase (MAPK) family, and protein kinase B (Akt), a downstream target of phosphatidylinositol 3-kinase (PI3K). SS-14 specifically stimulated the phosphorylation of both ERK 1/2 and Akt in a concentration-dependent fashion. This activation occurred within 5-15 min, then subsided after 1 h. The ERK inhibitor U0126 retarded SS-14-stimulated phosphorylation of ERK 1/2, whereas the PI3K inhibitor LY294002 blocked SS-14-stimulated phosphorylation of Akt. SS-14-inhibited expression of GH receptor (GHR) mRNA was blocked by U0126 but not by LY294002. By contrast, U1026 had no effect on SS-14 inhibition of GH-stimulated IGF-I mRNA expression, whereas LY294002 partially blocked the inhibition of GH-stimulated IGF-I mRNA expression by SS-14. These results indicate that SS-14-inhibited GHR expression is mediated by the ERK signaling pathway and that the PI3K/Akt pathway mediates, at least in part, SS-14 inhibition of GH-stimulated IGF-I expression.  相似文献   

9.
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional protein, which is found in most tissues and body fluids. Here, we demonstrated that recombinant TIMP-1 but not the synthetic matrix metalloproteinase inhibitor, GM6001, stimulated proliferation of human aortic smooth muscle cells (AoSMC) in a dose-dependent manner. The mitogenic effect was associated with activation of Ras, increased phosphorylation of ERK, and stimulation of cyclin D1 expression. The phosphatidylinositol 3-kinase (PI3K) signaling pathway was also involved since the PI3K inhibitor, LY294002, abolished the TIMP-1-mediated growth stimulation. These data suggest that TIMP-1 activates Ras, which then turns on the ERK and PI3K signaling pathways to promote cell cycle progression of the AoSMC.  相似文献   

10.
In vascular smooth muscle cells (VSMCs), platelet-derived growth factor (PDGF) plays a major role in inducing phenotypic switching from contractile to proliferative state. Importantly, VSMC phenotypic switching is also determined by the phosphorylation state/expression levels of insulin receptor substrate (IRS), an intermediary signaling component that is shared by insulin and IGF-I. To date, the roles of PDGF-induced key proliferative signaling components including Akt, p70S6kinase, and ERK1/2 on the serine phosphorylation/expression of IRS-1 and IRS-2 isoforms remain unclear in VSMCs. We hypothesize that PDGF-induced VSMC proliferation is associated with dysregulation of insulin receptor substrates. Using human aortic VSMCs, we demonstrate that prolonged PDGF treatment led to sustained increases in the phosphorylation of protein kinases such as Akt, p70S6kinase, and ERK1/2, which mediate VSMC proliferation. In addition, PDGF enhanced IRS-1/IRS-2 serine phosphorylation and downregulated IRS-2 expression in a time- and concentration-dependent manner. Notably, phosphoinositide 3-kinase (PI 3-kinase) inhibitor (PI-103) and mammalian target of rapamycin inhibitor (rapamycin), which abolished PDGF-induced Akt and p70S6kinase phosphorylation, respectively, blocked PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. In contrast, MEK1/ERK inhibitor (U0126) failed to block PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. PDGF-induced IRS-2 downregulation was prevented by lactacystin, an inhibitor of proteasomal degradation. Functionally, PDGF-mediated IRS-1/IRS-2 dysregulation resulted in the attenuation of insulin-induced IRS-1/IRS-2-associated PI 3-kinase activity. Pharmacological inhibition of PDGF receptor tyrosine kinase with imatinib prevented IRS-1/IRS-2 dysregulation and restored insulin receptor signaling. In conclusion, strategies to inhibit PDGF receptors would not only inhibit neointimal growth but may provide new therapeutic options to prevent dysregulated insulin receptor signaling in VSMCs in nondiabetic and diabetic states.  相似文献   

11.
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.  相似文献   

12.
Ras promotes robust survival of many cell systems by activating the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, but little is understood about the survival functions of the Ras/ERK pathway. We have used three different effector-loop mutant forms of Ras, each of which activates a single downstream effector pathway, to dissect their individual contributions to survival of nerve growth factor (NGF)-dependent sympathetic neurons. The PI3-kinase pathway-selective protein Ras(Val-12)Y40C was as powerful as oncogenic Ras(Val-12) in preventing apoptosis induced by NGF deprivation but conferred no protection against apoptosis induced by cytosine arabinoside. Identical results were obtained with transfected Akt. In contrast, the ERK pathway-selective protein Ras(Val-12)T35S had no protective effects on NGF-deprived neurons but was almost as strongly protective as Ras(Val-12) against cytosine arabinoside-induced apoptosis. The protective effects of Ras(Val-12)T35S against cytosine arabinoside were completely abolished by the ERK pathway inhibitor PD98059. Ras(Val-12)E37G, an activator of RalGDS, had no survival effect on either death pathway, similar to RasS17N, the full survival antagonist. Thus, Ras provides two independent survival pathways each of which inhibits a distinct apoptotic mechanism. Our study presents one of the few clear-cut cases where only the Ras/ERK, but not the Ras/PI3K/Akt pathway, plays a dominant survival signaling role.  相似文献   

13.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

14.
Ras-induced cell transformation is mediated through distinct downstream signaling pathways, including Raf, Ral-GEFs-, and phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathways. In some cell types, strong activation of the Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) cascade leads to cell cycle arrest rather than cell division. We previously reported that constitutive activation of this pathway induces sustained proliferation of primary cultures of postmitotic chicken neuroretina (NR) cells. We used this model system to investigate the respective contributions of Ras downstream signaling pathways in Ras-induced cell proliferation. Three RasV12 mutants (S35, G37, and C40) which differ by their ability to bind to Ras effectors (Raf, Ral-GEFs, and the p110 subunit of PI 3-kinase, respectively) were able to induce sustained NR cell proliferation, although none of these mutants was reported to transform NIH 3T3 cells. Furthermore, they all repressed the promoter of QR1, a neuroretina growth arrest-specific gene. Overexpression of B-Raf or activated versions of Ras effectors Rlf-CAAX and p110-CAAX also induced NR cell division. The mitogenic effect of the RasC40-PI 3-kinase pathway appears to involve Rac and RhoA GTPases but not the antiapoptotic Akt (protein kinase B) signaling. Division induced by RasG37-Rlf appears to be independent of Ral GTPase activation and presumably requires an unidentified mechanism. Activation of either Ras downstream pathway resulted in ERK activation, and coexpression of a dominant negative MEK mutant or mKsr-1 kinase domain strongly inhibited proliferation induced by the three Ras mutants or by their effectors. Similar effects were observed with dominant negative mutants of Rac and Rho. Thus, both the Raf-MEK-ERK and Rac-Rho pathways are absolutely required for Ras-induced NR cell division. Activation of these two pathways by the three distinct Ras downstream effectors possibly relies on an autocrine or paracrine loop, implicating endogenous Ras, since the mitogenic effect of each Ras effector mutant was inhibited by RasN17.  相似文献   

15.
This study reports that insulin-like growth factor I (IGF-I) prevents cerebellar granule cells from developing sensitivity to kainate neurotoxicity. Sensitivity to kainate neurotoxicity normally develops 5-6 days after switching cultures to a serum-free medium containing 25 mM K(+). Addition of either IGF-I or insulin to the serum-free medium at the time of the switch prevented the development of sensitivity to kainate, whereas brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-4, and nerve growth factor did not. The dose-response curves indicated IGF-I was more potent than insulin, favoring the assignment of the former as the physiological protective agent. The phosphatidylinositol 3-kinase (PI 3-K) inhibitors wortmannin (10-100 nM) and LY 294002 (0.3-1 microM) abolished the protection afforded by IGF-I. The p70 S6 kinase (p70(S6k)) inhibitor rapamycin (5-50 nM:) also abolished the protection afforded by IGF-I. The activities of both enzymes decreased in cultures switched to serum-free medium but increased when IGF-I was included; wortmannin (100 nM) lowered the activity of PI 3-K from 2 to 5 days after medium switch, whereas rapamycin (50 nM) prevented the increase observed for p70(S6k) activity over the same interval. The mitogen-activated protein kinase kinase inhibitor U 0126 and the mitogen-activated protein kinase inhibitor SB 203580 did not abolish IGF-I protection. Kainate neurotoxicity was not prevented by Joro spider toxin; therefore, the development of kainate neurotoxicity could not be explained by the formation of calcium-permeable alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors. These results indicate that IGF-I functions through a signal transduction pathway involving PI 3-K and p70(S6k) to prevent the development of sensitivity to kainate neurotoxicity in cerebellar granule cells.  相似文献   

16.
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.  相似文献   

17.
A rapid increase in the tyrosine phosphorylation of focal adhesion kinase (FAK) has been extensively documented in cells stimulated by multiple signaling molecules, but very little is known about the regulation of FAK phosphorylation at serine residues. Stimulation of Swiss 3T3 cells with platelet-derived growth factor (PDGF) promoted a striking increase in the phosphorylation of FAK at Ser-910, as revealed by site-specific antibodies that recognized the phosphorylated state of this residue. FAK phosphorylation at Ser-910 could be distinguished from that at Tyr-397 in terms of dose-response relationships and kinetics. Furthermore, the selective phosphoinositide 3-kinase (PI 3-kinase) inhibitors wortmannin and LY 294002 abrogated FAK phosphorylation at Tyr-397 but did not interfere with PDGF-induced FAK phosphorylation at Ser-910. Conversely, treatment with U0126, a potent inhibitor of MEK-mediated ERK activation, prevented FAK phosphorylation at Ser-910 induced by PDGF but did not interfere with PDGF-induced FAK phosphorylation at Tyr-397. These results were extended using growth factors that either stimulate, fibroblast growth factor (FGF), or do not stimulate (insulin) the ERK pathway activation in Swiss 3T3 cells. FGF but not insulin promoted a striking ERK-dependent phosphorylation of FAK at Ser-910. Our results indicate that FAK phosphorylation at Tyr-397 and FAK phosphorylation at Ser-910 are induced in response to PDGF stimulation through different signaling pathways, namely PI 3-kinase and ERK, respectively.  相似文献   

18.
The effects of insulin on vascular endothelial growth factor (VEGF) expression in cultured vascular cells and in angiogenesis were characterized. Insulin increased VEGF mRNA levels in mouse aortic smooth muscle cells from 10(-9) to 10(-7) m with an initial peak of 3.7-fold increases at 1 h and a second peak of 2.8-fold after 12 h. The first peak of VEGF expression was inhibited by LY294002, an inhibitor of phosphatidylinositol (PI) 3-kinase, and by the overexpression of dominant negative forms of p85 subunit of PI 3-kinase or Akt. Inhibitors of MEK kinase, PD98059, or overexpression of dominant negative forms of Ras was ineffective. In contrast, the chronic effect of insulin on VEGF expression was partially inhibited by both LY294002 or PD98059 as well as by the overexpression of dominant negatives of PI 3-kinase or Ras. The importance of PI 3-kinase-Akt pathway on VEGF expression was confirmed in mouse aortic smooth muscle cells isolated from insulin receptor substrate -1 knockout (IRS-1-/-) mice that showed parallel reductions of 46-49% in insulin-stimulated VEGF expression and PI 3-kinase-Akt activation. Insulin-induced activation of PI 3-kinase-Akt on hypoxia-induced VEGF expression and neovascularization was reduced by 40% in the retina of neonatal hypoxia model using IRS-1-/- mice. Thus, unlike other cells, insulin can regulate VEGF expression by both IRS-1/PI 3-kinase-Akt cascade and Ras-MAPK pathways in aortic smooth muscle cells. The in vivo results provide direct evidence that insulin can modulate hypoxia-induced angiogenesis via reduction in VEGF expression in vivo.  相似文献   

19.
We have previously reported that pertussis toxin (PTX)-sensitive GTP binding protein (G-protein) and phosphatidylinositol 3-kinase (PI 3-K) are involved in adipocyte differentiation of 3T3-L1 cells induced by insulin/dexamethasone/methylisobutyl xanthine. The aim of this study was to examine the effect of PTX on the tyrosine kinase cascade stimulated by insulin acting through insulin-like growth factor-I (IGF-I) receptors in undifferentiated 3T3-L1 cells. A high level of mitogen-activated protein kinase (MAPK) activation was sustained for up to 4 h after insulin treatment, and mobility shifted and tyrosine phosphorylated MAPK was also detected. MAPK kinase activity measured by the incorporation of 32P into kinase-negative recombinant MAPK was enhanced by insulin treatment. We previously discovered that insulin activates Ras and that this is mediated by wortmannin-sensitive PI 3-K. Tyrosine-phosphorylation of IRS-1 and Shc also occurred in response to insulin. Subsequently, we investigated the effects of PTX on the activation of these proteins by insulin. Interestingly, treating 3T3-L1 cells with PTX attenuates the activation by insulin of both the Ras-MAPK cascade and PI 3-K. In contrast, neither tyrosine-phosphorylation of IRS-1 and Shc nor the interaction between IRS-1 and PI 3-K is sensitive to PTX. However, activation of the Ras-MAPK cascade and tyrosine-phosphorylation of Shc by epidermal growth factor are insensitive to PTX. These results indicate that there is another pathway which regulates PI 3-K and Ras-MAPK, independent of the pathway mediated by IGF-I receptor kinase. These findings suggest that in 3T3-L1 fibroblasts, PTX-sensitive G-proteins cross-talk with the Ras-MAPK pathway via PI 3-K by insulin acting via IGF-I receptors.  相似文献   

20.
The stimulation of platelet-derived growth factor (PDGF) receptors shifts vascular smooth muscle (VSM) cells toward a more proliferative phenotype. Thrombin activates the same signaling cascades in VSM cells, namely the Ras/Raf/MEK/ERK and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways. Nonetheless, thrombin was not mitogenic, but rather increased the expression of the smooth muscle-specific myosin heavy chain (SM-MHC) indicative of an in vitro re-differentiation of VSM cells. A more detailed analysis of the temporal pattern and relative signal intensities revealed marked differences. The strong and biphasic phosphorylation of ERK1/2 in response to thrombin correlated with its ability to increase the activity of the SM-MHC promoter whereas Akt was only partially and transiently phosphorylated. By contrast, PDGF, a potent mitogen in VSM cells, induced a short-lived ERK1/2 phosphorylation but a complete and sustained phosphorylation of Akt. The phosphorylated form of Akt physically interacted with Raf. Moreover, Akt phosphorylated Raf at Ser(259), resulting in a reduced Raf kinase activity and a termination of MEK and ERK1/2 phosphorylation. Disruption of the PI 3-kinase signaling prevented the PDGF-induced Akt and Raf-Ser(259) phosphorylation. Under these conditions, PDGF elicited a more sustained MEK and ERK phosphorylation and increased SM-MHC promoter activity. Consistently, in cells that express dominant negative Akt, PDGF increased SM-MHC promoter activity. Furthermore, expression of constitutively active Akt blocked the thrombin-stimulated SM-MHC promoter activity. Thus, we present evidence that the balance and cross-regulation between the PI 3-kinase/Akt and Ras/Raf/MEK signaling cascades determine the temporal pattern of ERK1/2 phosphorylation and may thereby guide the phenotypic modulation of vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号