首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allergic reactions are among the most common conditions affecting the health of workers involved in the care and use of research animals. Between 11 and 44% of the individuals working with laboratory animals report work-related allergic symptoms. Of those who become symptomatic, 4 to 22% may eventually develop occupational asthma that can persist even after exposure ceases. Allergic symptoms consist of rashes where animals are in contact with the skin, nasal congestion and sneezing, itchy eyes, and asthma (cough, wheezing, and chest tightness). The generation of immunoglobulin E (IgE) antibodies is a prerequisite for the production of allergic symptoms. The mechanism by which IgE antibodies develop is becoming clearer. The propensity to produce IgE is genetically determined, and pre-existing allergy may be a risk factor for the development of laboratory animal allergy (LAA). However, exposure to animal allergens is the major risk factor for the development of LAA. Techniques to measure the airborne concentration of laboratory animal allergens have been developed. Research on animal allergens themselves indicates that many of the mouse and rat urinary proteins belong to a family of proteins called lipocalins, which share sequence homology with antigens of the parasitic agent that causes schistosomiasis. The fact that parasite infections also trigger IgE antibody responses may account for the development of LAA in persons who have never had any previous allergy. The prevention of LAA should be a major goal of an effective health and safety program in the animal research facility, and it can be accomplished by education and training of employees, reduction of exposure (including the use of personal protective gear), and changes in facility design. Medical surveillance programs can also play a role in improving health of individuals working with laboratory research animals. Early recognition of symptoms and evidence of sensitization can lead to interventions to reduce exposure and thereby avoid the long-term health consequences of LAA.  相似文献   

2.
Laboratory animal allergy (LAA) is a form of occupational allergic disease. The development of laboratory animal allergy is due to the presence of IgE antibodies directed against animal proteins. The process of sensitization (development of IgE antibodies) is a complex process which involves interaction of antigen presenting cells and lymphocytes of the Th-2 cell type. These cells generate a host of cytokines and other factors which lead to immediate hypersensitivity reactions and other factors which lead to immediate hypersensitivity reactions and the generation of allergic inflammation. Typical symptoms of laboratory animal allergy include nasal symptoms, such as sneezing, watery discharge, and congestion. Skin rashes are also common. Asthma, which produces symptoms of cough, wheezing, and shortness of breath, may affect 20-38% of workers who are sensitized to laboratory animal allergens. Rarely a generalized, life-threatening allergic reaction (anaphylaxis) may occur. The estimated prevalence of laboratory animal allergy is variable depending on the method used for diagnosis, but nonetheless may affect up to 46% of exposed workers. The presence of pre-existing allergies to non-work place allergens (e.g., dust mite, pollens, molds), exposure to laboratory animal allergens, and possibly tobacco smoking are risk factors for the development of laboratory animal allergy. Progress in the understanding of the mechanism and epidemiology of laboratory animal allergy will lead to improved methods for its prevention.  相似文献   

3.
Cytokine fingerprinting: characterization of chemical allergens.   总被引:2,自引:0,他引:2  
Chemical allergy is a common and important occupational health issue. Allergic sensitization induced by chemicals may take a variety of forms, including allergic contact dermatitis (skin sensitization) and allergic asthma and rhinitis (sensitization of the respiratory tract). There is a need to identify and characterize chemicals that have the potential to cause such sensitization reactions. Although a number of methods are available for the prospective analysis of skin sensitizing activity, there are currently no widely accepted tests for the identification of chemical respiratory allergens. We here describe a novel approach, cytokine fingerprinting, that has the potential to distinguish between chemical contact and respiratory allergens. The pattern of cytokine production by draining lymph node cells (LNCs) is evaluated following repeated topical exposure of mice to test chemicals. Experience to date reveals that contact allergens stimulate the selective development of type 1 immune responses associated with the secretion by draining LNCs of interferon gamma (IFN-gamma), but little interleukin-4 (IL-4) or interleukin-10 (IL-10). In contrast, chemical respiratory allergens are found to induce the appearance of preferential type 2 immune responses characterized by IL-4 and IL-10 production, but comparatively low levels of IFN-gamma. It is proposed that cytokine fingerprinting may permit the simultaneous identification and characterization of those chemicals that have the potential to cause allergic sensitization.  相似文献   

4.
Laboratory animal allergy (LAA) is a form of occupational sensitivity affecting up to one third or more of exposed workers. Symptoms involve the eyes, nose, skin, and lower respiratory tract. Asthma may develop in 20 to 30% of sensitized individuals. An occupational medical history is the primary tool if a diagnosis of LAA is suspected. The diagnosis is confirmed by demonstrating the presence of immunoglobulin E antibodies to laboratory animal allergens by skin testing or in vitro assays. If laboratory animal allergen-induced asthma is suspected, measurements of lung function are necessary for confirmation and assessing the degree of impairment. One approach to the problem is presented in this article. For individuals with LAA, avoidance of exposure is the primary treatment. For individuals who continue to work in the environment, pharmacological treatment of their symptoms may be necessary. Methods to prevent the development of LAA are also discussed.  相似文献   

5.
There is increased recognition of hypersensitivity lung disease among workers with laboratory animals as an occupational disease. Symptoms of asthma in 44 of 78 workers with laboratory animal dander allergy reflected the serious consequences of this occupational ailment. Affected employee profiles induced family history of atopy; immediate (Type I) allergic reaction; symptoms of rhinitis, asthma, and cough; hypersensitivity to one or more species, most often rats, mice, and rabbits. Diagnosis depends on history and physical, radiologic, and laboratory examinations, including skin tests with relevant antigens. Control and treatment depend on environmental change (reemployment or reduction of antigen contact); mechanical devices (masks and filters); chemotherapy (bronchodilators, steroids), prophylaxis and immunotherapy (hyposensitization). Standardization of medico-legal criteria covering occupational asthma is needed.  相似文献   

6.

Background

Probiotics have been studied as immunomodulatory agents of allergy. Several human probiotic trials tracking the development of eczema and other forms of allergy have yielded inconsistent results. A recent infant study demonstrated that pre and postnatal Lactobacillus rhamnosus HN001 (HN001) supplementation decreased the prevalence of eczema and IgE associated eczema. However, the influence of HN001 on the incidence of wheeze, asthma, and/or other allergic manifestations has yet to be reported.

Objective

This study was conducted to determine the effects of the probiotic HN001 on the development of allergic lung disease in a pig model.

Methods

Allergy was induced by a series of subcutaneous and intratracheal sensitizations with Ascaris suum allergen (ASA) during a six week time frame in post-weanling pigs supplemented daily with HN001, or without supplementation. One week following final sensitization intradermal skin tests and respiratory challenges were conducted.

Results

In response to intradermal and respiratory challenges, ASA-sensitized pigs fed HN001 had less severe skin flare reactions, smaller increases in pleural pressure, and trends towards lower changes in arterial oxygen and carbon dioxide partial pressure levels compared to control pigs. The frequency of ASA-specific IFN-γ-secreting peripheral blood mononuclear cells, as well as the amount of IL-10 produced by ASA-specific cells, was of greater magnitude in probiotic-fed pigs compared to control animals. These observations suggest that differences in clinical responses to the allergen challenges may be related to probiotic-induced modulation of Th1 (IFN-γ) and regulatory (IL-10) cytokine expression.

Conclusions

Probiotic supplementation decreased the severity of allergic skin and lung responses in allergen-sensitized pigs with a corresponding increase in IFN-γ expression. A similar correlation between certain allergic responses and increased IFN-γ expression has been reported in human clinical studies of allergy; this pig model of allergy may be indicative of potential probiotic modulation of allergic lung disease in humans.  相似文献   

7.
8.
Radioimmunological tests were carried out in 180 children with pruritus and 167 children with pruritus and allergic respiratory diseases. Difference between these groups was statistically insignificant in case of food allergy. Results of RAST were more often positive in case of respiratory allergy in the patients with pruritus and coexisting allergic respiratory diseases than in patients with skin involvement only. Reaction was more intense and allergy polyvalence measured with RAST was higher. All differences were statistically significant (p less than 0.001 or 0.01). Mean IgE levels was higher in children of all age groups in case of pruritus coexisting with allergic respiratory diseases.  相似文献   

9.
Derek M. Wyse  David Malloch 《CMAJ》1970,103(12):1272-1276
A history of respiratory or other allergic symptoms during the Christmas season is occasionally obtained from allergic patients and can be related to exposure to conifers at home or in school. Incidence and mechanism of production of these symptoms were studied. Of 1657 allergic patients, respiratory and skin allergies to conifers occurred in 7%. This seasonal syndrome includes sneezing, wheezing and transitory skin rashes. The majority of patients develop their disease within 24 hours, but 15% experience symptoms after several days'' delay. Mould and pollen studies were carried out in 10 test sites before, during and after tree placement in the home. Scrapings from pine and spruce bark yielded large numbers of Penicillium, Epicoccum and Alternaria, but these failed to become airborne. No significant alteration was discovered in the airborne fungi in houses when trees were present. Pollen studies showed release into air of weed, grass and tree pollens while Christmas trees were in the house. Oleoresins of the tree balsam are thought to be the most likely cause of the symptoms designated as Christmas tree allergy.  相似文献   

10.
Summary This paper reviews the relationships between humidity, house-dust mites and respiratory allergy. In vitro relationship between relative humidity and house-dust mite growth are quite clear cut. In real conditions also, there is a significant association between relative humidity and the presence of live mites. The relevance of house-dust mites for respiratory allergy lies on clinical, physiopathological and mostly on epidemiological data. The latter demonstrate a correlation between exposure to mites and risk of sensitization and development of overt allergic diseases. Lastly, humidity of dwellings is linked to respiratory allergy. These results should lead to building safer dwellings for allergic subjects, or modifying existing dwellings. In this respect, emphasis should be put on a proper ventilation rate and also a proper behaviour of inhabitants in order to minimize humidity production.  相似文献   

11.
The prevalence of allergic diseases has shown an increase in the last few years. Allergic diseases develop in persons with a genetic background, this genetic trait being known as atopy. The main pathophysiological characteristic of allergy is inflammation. The inflammatory process may explain the diversity of symptoms and signs of allergy. The early sensitization increases the risk of developing different symptomatic forms of allergy, and one person may present different symptoms and signs of allergy. But some persons can become allergic without atopy trait in conditions of a higher and longer exposure to allergens (e.g. occupational allergy). In the last years new allergens have induced symptoms, sometimes with a life-threatening evolution. The load of allergen in public areas is also increasing. In this context, allergy must be understood as a unique systemic disease with various forms of presentation.  相似文献   

12.
OBJECTIVE--To investigate clinical features of acute allergic reactions to peanuts and other nuts. DESIGN--Analysis of data from consecutive patients seen by one doctor over one year in an allergy clinic at a regional referral centre. SUBJECTS--62 patients aged 11 months to 53 years seen between October 1993 and September 1994. MAIN OUTCOME MEASURES--Type and severity of allergic reactions, age at onset of symptoms, type of nut causing allergy, results of skin prick tests, and incidence of other allergic diseases and associated allergies. RESULTS--Peanuts were the commonest cause of allergy (47) followed by Brazil nut (18), almond (14), and hazelnut (13). Onset of allergic symptoms occurred by the age of 2 years in 33/60 and by the age of 7 in 55/60. Peanuts accounted for all allergies in children sensitised in the first year of life and for 82% (27/33) of allergies in children sensitised by the third year of life. Multiple allergies appeared progressively with age. The commonest symptom was facial angioedema, and the major feature accounting for life threatening reactions was laryngeal oedema. Hypotension was uncommon. Of 55 patients, 53 were atopic--that is, had positive skin results of tests to common inhaled allergens--and all 53 had other allergic disorders (asthma, rhinitis, eczema) due to several inhaled allergens and other foods. CONCLUSIONS--Sensitisation, mainly to peanuts, is occurring in very young children, and multiple peanut/nut allergies appear progressively. Peanut and nut allergy is becoming common and can cause life threatening reactions. The main danger is laryngeal oedema. Young atopic children should avoid peanuts and nuts to prevent the development of this allergy.  相似文献   

13.

Background

Atopic diseases, including allergic rhinitis, allergic dermatitis and asthma, are common diseases with a prevalence of 30–40% worldwide and are thus of great global public health importance. Allergic inflammation may influence the immunity against infections, so atopic individuals could be susceptible to respiratory infections. No previous population-based study has addressed the relation between atopy and respiratory infections in adulthood. We assessed the relation between atopic disease, specific IgE antibodies and the occurrence of upper and lower respiratory infections in the past 12 months among working-aged adults.

Methods and Findings

A population-based cross-sectional study of 1008 atopic and non-atopic adults 21–63 years old was conducted. Information on atopic diseases, allergy tests and respiratory infections was collected by a questionnaire. Specific IgE antibodies to common aeroallergens were measured in serum. Adults with atopic disease had a significantly increased risk of lower respiratory tract infections (LRTI; including acute bronchitis and pneumonia) with an adjusted risk ratio (RR) 2.24 (95% confidence interval [CI] 1.43, 3.52) and upper respiratory tract infections (URTI; including common cold, sinusitis, tonsillitis, and otitis media) with an adjusted RR 1.55 (1.14, 2.10). The risk of LRTIs increased with increasing level of specific IgE (linear trend P = 0.059).

Conclusions

This study provides new evidence that working-aged adults with atopic disease experience significantly more LRTIs and URTIs than non-atopics. The occurrence of respiratory infections increased with increasing levels of specific IgE antibodies to common aeroallergens, showing a dose-response pattern with LRTIs. From the clinical point of view it is important to recognize that those with atopies are a risk group for respiratory infections, including more severe LRTIs.  相似文献   

14.
In order to clarify the aetiological role of fungi in determining allergic diseases, we evaluated the correlation between the positive skin test response to fungal allergens and the presence of the same species in the upper respiratory tract in 193 patients with suspected allergic disease to fungi. The results of our study have shown that the isolation and identification of the fungal flora from the patient’s respiratory tract, in addition to the medical history, the symptomatology, and the diagnostic in vivo and in vitro, can be helpful to identify the species responsible for provoking the allergic manifestations, and can be recommended either as a supplement to the diagnosis or as a guidance in elimination treatment.  相似文献   

15.
A new simple and sensitive in-vitro method for the diagnosis of type 1 (IgE-mediated) hypersensitivity in man is described. Sliced human skin is passively sensitized by reaginic serum from allergic patients and the presence of antigen-specific IgE on the sensitized slices is detected by assay of antigen-evoked histamine release. Serum from 12 out of 14 patients with clinical respiratory allergy and positive skin tests gave significant antigen-specific histamine release. This method, which is essentially an in-vitro model of the Prausnitz-Küstner reaction, should prove of value in the diagnosis of human reaginic hypersensitivity in man.  相似文献   

16.
Allergic reactions to foods represent a prominent, actual and increasing problem in clinical medicine. Symptoms of food allergy comprise skin reactions (urticaria, angioedema, eczema) respiratory (bronchoconstriction, rhinitis), gastrointestinal (cramping, diarrhea) and cardiovascular symptoms with the maximal manifestation of anaphylactic shock. They can be elicited by minute amounts of allergens. The diagnosis of food allergy is done by history, skin test, in vitro allergy diagnosis and — if necessary — oral provocation tests, if possible placebo-controlled. Avoidance of respective allergens for the allergic patient, however, is often complicated or impossible due to deficits in declaration regulations in many countries. Increasing numbers of cases including fatalities, due to inadvertent intake of food allergens are reported. It is therefore necessary to improve declaration laws and develop methods for allergen detection in foods. Allergens can be detected by serological methods (enzyme immunoassays, in vitro basophil histamine release or in vivo skin test procedures in sensitized individuals). The problem of diagnosis of food allergy is further complicated by cross-reactivity between allergens in foods and aeroallergens (pollen, animal epithelia, latex etc.). Elicitors of pseudo-allergic reactions with similar clinical symptomatology comprise low-molecular-mass chemicals (preservatives, colorings, flavor substances etc.). For some of them (e.g. sulfites) detection assays are available. In some patients classic allergic contact eczema can be elicited systemically after oral intake of low-molecular-mass contact allergens such as nickel sulfate or flavorings such as vanillin in foods. The role of xenobiotic components in foods (e.g. pesticides) is not known at the moment. In order to improve the situation of the food allergic patient, research programs to elucidate the pathophysiology and improve allergen detection strategies have to be implemented together with reinforced declaration regulations on a quantitative basis.  相似文献   

17.
In this cross-sectional survey of laboratory animal workers in the United States, 23 of 1367 persons reported 28 cases of infection with zoonotic agents from research animals at their workplace during the past 5 years, with six persons indicating that their infections were medically confirmed. Based on these data, the annualized incidence rate for work-related transmission of zoonotic agents from laboratory animals was 45 cases per 10,000 worker-years at risk (95% confidence interval, 30 to 65 cases), approximating the rate for nonfatal occupational illnesses in the agricultural production-livestock industry and for those employed in the health services during 2002. Logistic regression analysis found various characteristics of persons and their employers that were significantly associated with the likelihood of having been medically evaluated for exposure to a zoonotic agent from laboratory animals. Most (95.595% +/- 1.1%) persons working with laboratory animals or their tissues indicated that they knew whom to talk to at their institution for medical evaluation and care should they be concerned about the possibility of an occupationally acquired zoonotic disease in future. However, occupational illnesses and exposures among laboratory animal workers was underreported, as 10 of the 28 (36%) alleged zoonotic disease cases were not communicated to the employee's supervisor. Lack of concern about the potential significance to their health and the perception of punitive consequences to the employee were some of the reasons cited for underreporting, an issue which must be vigorously addressed in the interests of continuing progress toward zoonotic disease prevention in this field.  相似文献   

18.
Treatments for mitochondrial disease, while developing, remain limited. Therapies complementary to traditional medical and surgical approaches may benefit the patient with mitochondrial disease. The goals of the 'allied health professions' of physical, occupational, speech and respiratory therapies are to maintain and if possible, improve patients' existing strength, functioning and mobility. These therapists also play an important role in helping patients to compensate for disabilities and adapt to progressive symptoms. Novel forms of physical and occupational therapies, equine or "hippotherapy" and pet therapy, use the human to animal relationship to improve physical and emotional health. To enhance quality of life, an integrated team of experts, under the guidance and supervision of the physician, should be available to the patient with mitochondrial disease.  相似文献   

19.
道义上的责任或是法律法规都要求公司或单位提供一个安全和健康的工作环境,以保障员工免受不必要的危害。职业健康与安全(OHS)规程的目的就是预防职业伤害和疾病,它不仅需要满足法规的要求,更重要的是控制危害和减少风险。本文描述了实验动物相关OHS规程的重要性及一些关键要素,如管理措施、设施的设计与运行、控制与危险物的接触、教育和培训、职业健康专业化服务、仪器设备的性能、信息管理、应急措施及对规程的评估和完善。本文还简要地介绍了常见的实验非人灵长类动物相关的人畜共患疾病,以及如何安全地从事实验动物相关工作。  相似文献   

20.
Protein induced respiratory hypersensitivity, particularly atopic disease in general, and allergic asthma in particular, has increased dramatically over the last several decades in the US and other industrialized nations as a result of ill-defined changes in living conditions in modern western society. In addition, work-related asthma has become the most frequently diagnosed occupational respiratory illness. Animal models have demonstrated great utility in developing an understanding of the etiology and mechanisms of many diseases. A few models been developed as predictive models to identify a protein as an allergen or to characterize its potency. Here we describe animal models that have been used to investigate and identify protein respiratory sensitizers. In addition to prototypical experimental design, methods for exposure route, sample collection, and endpoint assessment are described. Some of the most relevant endpoints in assessing the potential for a given protein to induce atopic or allergic asthma respiratory hypersensitivity are the development of cytotropic antibodies (IgE, IgG1), eosinophil influx into the lung, and airway hyperresponsiveness to the sensitizing protein and/or to non-antigenic stimuli (Mch). The utility of technologies such as PCR and multiplexing assay systems is also described. These models and methods have been used to elucidate the potential for protein sources to induce allergy, identify environmental conditions (pollutants) to impact allergy responsiveness, and establish safe exposure limits. As an example, data are presented from an experiment designed to compare the allergenicity of a fungal biopesticide Metarhizium anisopliae (MACA) crude extract with the one of its components, conidia (CON) extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号