首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progressive rise in uterine blood flow during pregnancy is accompanied by outward hypertrophic remodeling of the uterine artery (UA). This process involves changes of the arterial smooth muscle cells and extracellular matrix. Acute increases in blood flow stimulate endothelial production of nitric oxide (NO). It remains to be established whether endothelial NO synthase (eNOS) is involved in pregnancy-related arterial remodeling. We tested the hypothesis that absence of eNOS results in a reduced remodeling capacity of the UA during pregnancy leading to a decline in neonatal outcome. UA of nonpregnant and pregnant wild-type (Nos3+/+) and eNOS-deficient (Nos3-/-) mice were collected and processed for standard morphometrical analyses. In addition, cross sections of UA were processed for cytological (smoothelin, smooth muscle alpha-actin) and proliferation (Ki-67) immunostaining. We compared the pregnancy-related changes longitudinally and, together with the data on pregnancy outcome, transversally by analysis of variance with Bonferroni correction. During pregnancy, the increases in radius and medial cross sectional area of Nos3-/- UA was significantly less than those of Nos3+/+ UA. Smooth muscle cell dedifferentiation and proliferation were impaired in gravid Nos3-/- mice as deduced from the lack of change in the expression of smoothelin and smooth muscle alpha-actin, and the reduced Ki-67 expression. Until 17 days of gestation, litter size did not differ between both genotypes, but at birth the number of viable newborn pups and their weights were smaller in Nos3-/- than in Nos3+/+ mice. We conclude that absence of eNOS adversely affects UA remodeling in pregnancy, which may explain the impaired pregnancy outcome observed in these mice.  相似文献   

2.
Experiments in wild-type (WT; C57BL/6J) mice, endothelial nitric oxide synthase null mutant [eNOS(-/-)] mice, and neuronal NOS null mutant [nNOS(-/-)] mice were performed to determine which NOS isoform regulates renal cortical and medullary blood flow under basal conditions and during the infusion of ANG II. Inhibition of NOS with N(omega)-nitro-l-arginine methyl ester (l-NAME; 50 mg/kg iv) in Inactin-anesthetized WT and nNOS(-/-) mice increased arterial blood pressure by 28-31 mmHg and significantly decreased blood flow in the renal cortex (18-24%) and the renal medulla (13-18%). In contrast, blood pressure and renal cortical and medullary blood flow were unaltered after l-NAME administration to eNOS(-/-) mice, indicating that NO derived from eNOS regulates baseline vascular resistance in mice. In subsequent experiments, intravenous ANG II (20 ng x kg(-1) x min(-1)) significantly decreased renal cortical blood flow (by 15-25%) in WT, eNOS(-/-), nNOS(-/-), and WT mice treated with l-NAME. The infusion of ANG II, however, led to a significant increase in medullary blood flow (12-15%) in WT and eNOS(-/-) mice. The increase in medullary blood flow following ANG II infusion was not observed in nNOS(-/-) mice, in WT or eNOS(-/-) mice pretreated with l-NAME, or in WT mice administered the nNOS inhibitor 5-(1-imino-3-butenyl)-l-ornithine (1 mg x kg(-1) x h(-1)). These data demonstrate that NO from eNOS regulates baseline blood flow in the mouse renal cortex and medulla, while NO produced by nNOS mediates an increase in medullary blood flow in response to ANG II.  相似文献   

3.
The purpose of this study was to evaluate the impact of angiotensinogen gene (Agt) deficiency on reproductive fitness in a rodent model. Mice with 0 (Agt(-/-)), 1 (Agt(-/+)), and 2 (Agt(+/+)) copies of Agt were bred according to the following schemes: 1) Agt(-/-) x Agt(-/-), 2) Agt(-/+) x Agt(-/+), 3) Agt(+/+) x Agt(+/+), and 4) Agt(+/+) female symbol x Agt(-/+) male symbol. There were 4 breeding pairs per scheme. Breedings were time mated. Mice and litters were weighed daily. Southern blotting was used for genotyping. We found that Agt(-/-) breeding pairs had fewer litters (2 [range 1-2] vs. 4 [range 3-5]; P = 0.01), fewer pups per litter (4 [range 1-7] vs. 6 [range 1-10]; P = 0.006), and longer interpregnancy intervals (43 days [range 31-44] vs. 35.5 days [range 22-58]; P = 0.04) compared to wild-type controls. The ratio of postcoital plugs to subsequent litters was 4.0 and 1.2 for Agt(-/-) and Agt(+/+) breedings, respectively (P = 0.03). Median maternal weights during all trimesters of pregnancy were significantly lower for Agt-deficient mice compared to wild-type controls. Among Agt(-/+) x Agt(-/+) breedings, the proportions of Agt(+/+) (n = 17), Agt(-/+) (n = 38), and Agt(-/-) (n = 4) offspring differed significantly from the expected 1:2:1 Mendelian inheritance pattern (P = 0.03). Neonatal survival among the offspring derived from the Agt(-/-) x Agt(-/-) breeding scheme was significantly reduced (P = 0. 001). We conclude that Agt deficiency is associated with an in utero lethal effect, decreased fertility, and impaired neonatal survival.  相似文献   

4.
Perinatal development of endothelial nitric oxide synthase-deficient mice   总被引:4,自引:0,他引:4  
The purpose of this study was to evaluate the influence of endothelial nitric oxide synthase (eNOS) deficiency on fetal growth, perinatal survival, and limb development in a mouse model with a targeted mutagenesis of the Nos3 gene. Wild-type (Nos3+/+) and eNOS-deficient fetuses (Nos3-/-) were evaluated on Gestational Day (E)15 and E17, and newborn pups were observed on Day 1 of life (D1). The average term duration of pregnancy was 19 days. For the evaluation of postnatal development, a breeding scheme consisting of Nos3+/- x Nos3+/- and Nos3-/- x Nos3-/- mice was established, and offspring were observed for 3 wk. Southern blotting was used for genotyping. No significant differences in fetal weight, crown-rump lengths (CRL), and placental weight were seen between Nos3+/+ and Nos3-/- fetuses on E15. By E17, Nos3-/- fetuses showed significantly reduced fetal weights, CRL, and placental weights. This difference in body weight was also seen throughout the whole postnatal period. In pregnancies of Nos3-/- females, the average number of pups alive on D1 was significantly decreased compared to either E15 or E17. Placental histology revealed no abnormalities. On E15, E17, and D1, Nos3(-/-) fetuses demonstrated focal acute hemorrhages in the distal limbs in 0%, 2.6%, and 5.7%, respectively, of all mutant mice studied on the respective days. Bone measurements showed significantly shorter bones in the peripheral digits of hindpaws of Nos3-/- newborns. We conclude mice deficient for eNOS show characteristically abnormal prenatal and postnatal development including fetal growth restriction, reduced survival, and an increased rate of limb abnormalities. The development of this characteristic phenotype of eNOS-deficient mice dates back to the prenatal development during the late third trimester of pregnancy.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS) is essential for neovascularization. Here we show that the impaired neovascularization in mice lacking eNOS is related to a defect in progenitor cell mobilization. Mice deficient in eNOS (Nos3(-/-)) show reduced vascular endothelial growth factor (VEGF)-induced mobilization of endothelial progenitor cells (EPCs) and increased mortality after myelosuppression. Intravenous infusion of wild-type progenitor cells, but not bone marrow transplantation, rescued the defective neovascularization of Nos3(-/-) mice in a model of hind-limb ischemia, suggesting that progenitor mobilization from the bone marrow is impaired in Nos3(-/-) mice. Mechanistically, matrix metalloproteinase-9 (MMP-9), which is required for stem cell mobilization, was reduced in the bone marrow of Nos3(-/-) mice. These findings indicate that eNOS expressed by bone marrow stromal cells influences recruitment of stem and progenitor cells. This may contribute to impaired regeneration processes in ischemic heart disease patients, who are characterized by a reduced systemic NO bioactivity.  相似文献   

6.
Previous studies demonstrated that overexpression of angiotensinogen (AGT) in adipose tissue increased blood pressure. However, the contribution of endogenous AGT in adipocytes to the systemic renin-angiotensin system (RAS) and blood pressure control is undefined. To define a role of adipocyte-derived AGT, mice with loxP sites flanking exon 2 of the AGT gene (Agt(fl/fl)) were bred to transgenic mice expressing Cre recombinase under the control of an adipocyte fatty acid-binding protein 4 promoter (aP2) promoter to generate mice with adipocyte AGT deficiency (Agt(aP2)). AGT mRNA abundance in adipose tissue and AGT secretion from adipocytes were reduced markedly in adipose tissues of Agt(aP2) mice. To determine the contribution of adipocyte-derived AGT to the systemic RAS and blood pressure control, mice were fed normal laboratory diet for 2 or 12 mo. In males and females of each genotype, body weight and fat mass increased with age. However, there was no effect of adipocyte AGT deficiency on body weight, fat mass, or adipocyte size. At 2 and 12 mo of age, mice with deficiency of AGT in adipocytes had reduced plasma concentrations of AGT (by 24-28%) compared with controls. Moreover, mice lacking AGT in adipocytes exhibited reduced systolic blood pressures compared with controls (Agt(fl/fl), 117 ± 2; Agt(aP2), 110 ± 2 mmHg; P < 0.05). These results demonstrate that adipocyte-derived AGT contributes to the systemic RAS and blood pressure control.  相似文献   

7.
Cushing's syndrome and systemic administration of glucocorticoids are associated with hypertension, but the underlying molecular mechanism is only partially understood. We have shown previously that dexamethasone downregulates the expression of the endothelial NO synthase (eNOS) gene in human endothelial cells and in the rat and that this may contribute to the blood pressure-raising effect of the steroid [Proc. Natl. Acad. Sci. USA 96 (1999) 13357]. In the current communication, we demonstrated that dexamethasone increased mean arterial blood pressure in wild-type C-57 Bl6 mice (eNOS+/+ mice), but had no effect on blood pressure in mice with a disrupted eNOS gene (eNOS-/- mice) derived from the same strain. The NOS inhibitor ethylisothiourea, used for control purposes, showed a hypertensive effect in eNOS+/+ mice, but no such effect in eNOS-/- mice. Serum NO2-/NO3- levels, an indicator of total body NO synthesis, decreased significantly when eNOS+/+ mice were treated with dexamethasone. eNOS-/- mice had lower serum NO2-/NO3- levels per se, which were not changed significantly by dexamethasone. Dexamethasone decreased the expression of eNOS in three major organs of the mouse investigated, namely the heart, the liver, and the kidney. We conclude that the expressional downregulation of eNOS and the ensuing reduction in vascular NO production contributes to the hypertension caused by glucocorticoids.  相似文献   

8.
The current study aimed to determine effects of deficiencies in nitric oxide synthase (NOS) 3 on embryo and fetal development by in vivo, noninvasive, real-time ultrasonographic assessment of phenotypic changes in Nos3-knockout pregnant mice and their wild-type counterparts. From Day 4.5 of pregnancy onwards, embryonic vesicle diameters, crown-rump lengths, and trunk diameters were obtained by serial scanning of seven adult pregnant female mice, strain B6.129P2-Nos3(tm1Unc)/J, N9 generation backcrossing with C57BL/6J mice, homozygous for the disruption of the endothelial NOS gene (group Nos3(-/-)), and 12 pregnant, wild-type C57BL/6J mice (group Nos3(+/+)). All the measurements increased in both genotypes throughout gestation. However, embryo length and width were significantly larger in Nos3(+/+) than in Nos3(-/-) mice from Day 8.5, and both longitudinal and transverse diameters of the entire gestational sacs were larger in Nos3(+/+) mice from Day 10.5. Assessment of the relative growth of embryos/fetuses and gestational annexes showed different patterns among Nos3(-/-) and Nos3(+/+) mice. Throughout pregnancy, the distance between the external limit of the gestational sac and the embryo in Nos3(+/+) mice diminished in longitudinal sections, or remained unaffected in transverse sections. In Nos3(-/-) mice, there were significant increases (P < 0.005) in the differences between embryo and gestational vesicle measurements in both longitudinal and transversal curves from Days 5.5 to 14.5, but from Day 14.5 of pregnancy onward, the changes were not significant. The results demonstrate that the processes of fetal growth retardation in the Nos3(-/-) mice are established from early pregnancy stages.  相似文献   

9.
The FGS/Nga mouse strain, established from an outcross between CBA/N and RFM/Nga mice strains, has previously been reported as a spontaneous mouse model for focal glomerular sclerosis (FGS) and is considered to have two pairs of autosomal recessive genes associated with FGS. In this study, we examined the changes of seven renal lesion-related parameters, blood urea nitrogen (BUN), creatinine, albumin and total protein in plasma, urinary protein, systolic blood pressure, and a glomerulosclerosis index on histological observation, in 20-week-old FGS/Nga mice and their age-matched two parental strains, CBA/N and RFM/Nga. The levels of plasma BUN and creatinine, urinary protein and systolic blood pressure were significantly increased in FGS/Nga, compared with those of the parental strains. RFM/Nga mice showed slightly elevated levels of all biochemical makers. In histological analysis, a higher glomerulosclerosis index was observed in FGS/Nga than the two parental strains. RFM/Nga mice appeared to have slight sclerotic lesions of glomeruli, but no renal failure was observed in CBA/N mice. These results suggest that at least one mutant gene that causes the progression of renal lesion in FGS/Nga mice is derived from RFM/Nga.  相似文献   

10.
We investigated the effects of dual renin-angiotensin system (RAS) blockade on angiotensin-converting enzyme-2 (Ace2) expression, hypertension, and renal proximal tubular cell (RPTC) apoptosis in type 1 diabetic Akita angiotensinogen (Agt)-transgenic (Tg) mice that specifically overexpress Agt in their RPTCs. Adult (11 wk old) male Akita and Akita Agt-Tg mice were treated with two RAS blockers (ANG II receptor type 1 blocker losartan, 30 mg·kg(-1)·day(-1)) and angiotensin-converting enzyme (ACE) inhibitor perindopril (4 mg·kg(-1)·day(-1)) in drinking water. Same-age non-Akita littermates and Agt-Tg mice served as controls. Blood pressure, blood glucose, and albuminuria were monitored weekly. The animals were euthanized at age 16 wk. The left kidneys were processed for immunohistochemistry and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess gene and protein expression. Urinary ANG II and ANG 1-7 were quantified by ELISA. RAS blockade normalized renal Ace2 expression and urinary ANG 1-7 levels (both of which were low in untreated Akita and Akita Agt-Tg), prevented hypertension, albuminuria, tubulointerstitial fibrosis and tubular apoptosis, and inhibited profibrotic and proapoptotic gene expression in RPTCs of Akita and Akita Agt-Tg mice compared with non-Akita controls. Our results demonstrate the effectiveness of RAS blockade in preventing intrarenal RAS activation, hypertension, and nephropathy progression in diabetes and support the important role of intrarenal Ace2 expression in modulating hypertension and renal injury in diabetes.  相似文献   

11.
It was hypothesized that a serial stimulation of vascular cyclooxygenase-2 (COX-2) with subsequent activation of endothelial nitric oxide synthase (eNOS) is responsible for decrease in blood pressure, cardiac performance, and vascular reactivity in endotoxemia caused by LPS. The hypothesis was tested in catheterized, conscious, freely moving, wild-type mice and mice (C57BL/6J background) with targeted deletion of COX-2 and eNOS that were given an intravenous LPS bolus (2 mg/kg, 055:B5). In vitro studies were performed on murine aorta rings. LPS caused a concomitant decrease in mean arterial blood pressure (MAP) and heart rate (HR) that was significant after 3 h and was sustained throughout the experiment (8 h). The LPS-induced changes in MAP and HR were not different from control in COX-2(-/-) and eNOS(-/-) mice. A prostacyclin receptor antagonist (BR5064) blocked the hypotensive effect of a prostacyclin agonist (beraprost), but did not attenuate the LPS-induced decrease in MAP and HR. LPS decreased eNOS and neuronal NOS mRNA abundances in several organs, while inducible NOS mRNA was enhanced. In aortic rings, LPS suppressed α(1)-adrenoceptor-mediated vascular tone. Inhibition of COX-2 activity (NS 398), disruption of COX-2, endothelium removal, or eNOS deletion (eNOS(-/-)) did not improve vascular reactivity after LPS, while the NO synthase blockers 1400W and N(G)-nitro-l-arginine methyl ester prevented loss of tone. COX-2 and eNOS activities are not necessary for LPS-induced decreases in blood pressure, heart rate, and vascular reactivity. Inducible NOS activity appears crucial. COX-2 and eNOS are not obvious therapeutic targets for cardiovascular rescue during gram-negative endotoxemic shock.  相似文献   

12.
13.
Two distinct phenotypic groups of inbred strains of mice, with different amounts of submaxillary gland (SMG) renin have been described. We have previously shown that strains with high levels of SMG renin, such as Swiss or AKR mice, have two renin genes, Rn1 and Rn2, per haploid genome, while strains with low levels of SMG, such as BALB/c or C57Bl/6, have only one renin gene. We now report the molecular cloning of cDNA copies of Swiss mouse kidney renin mRNA and present nucleotide sequence data of the recombinant clones. Comparison of these sequences with the sequence of Swiss mouse SMG renin mRNA we have previously reported, demonstrates that Swiss mice express the two non-allelic genes, Rn1 and Rn2.  相似文献   

14.
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.  相似文献   

15.
Critical protection from renal ischemia reperfusion injury by CD55 and CD59   总被引:11,自引:0,他引:11  
Renal ischemia-reperfusion injury (IRI) is a feature of ischemic acute renal failure and it impacts both short- and long-term graft survival after kidney transplantation. Complement activation has been implicated in renal IRI, but its mechanism of action is uncertain and the determinants of complement activation during IRI remain poorly understood. We engineered mice deficient in two membrane complement regulatory proteins, CD55 and CD59, and used them to investigate the role of these endogenous complement inhibitors in renal IRI. CD55-deficient (CD55(-/-)), but not CD59-deficient (CD59(-/-)), mice exhibited increased renal IRI as indicated by significantly elevated blood urea nitrogen levels, histological scores, and neutrophil infiltration. Remarkably, although CD59 deficiency alone was inconsequential, CD55/CD59 double deficiency greatly exacerbated IRI. Severe IRI in CD55(-/-)CD59(-/-) mice was accompanied by endothelial deposition of C3 and the membrane attack complex (MAC) and medullary capillary thrombosis. Complement depletion in CD55(-/-)CD59(-/-) mice with cobra venom factor prevented these effects. Thus, CD55 and CD59 act synergistically to inhibit complement-mediated renal IRI, and abrogation of their function leads to MAC-induced microvascular injury and dysfunction that may exacerbate the initial ischemic assault. Our findings suggest a rationale for anti-complement therapies aimed at preventing microvascular injury during ischemia reperfusion, and the CD55(-/-)CD59(-/-) mouse provides a useful animal model in this regard.  相似文献   

16.
Within cardiomyocytes, endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) are thought to modulate L-type calcium channel (LTCC) function and sarcoplasmic reticulum calcium cycling, respectively. However, divergent results from mostly invasive prior studies suggest more complex roles. To elucidate the roles of nNOS and eNOS in vivo, we applied noninvasive cardiac MRI to study wild-type (WT), eNOS(-/-), and nNOS(-/-) mice. An in vivo index of LTCC flux (LTCCI) was measured at baseline (Bsl), dobutamine (Dob), and dobutamine + carbacholamine (Dob + CCh) using manganese-enhanced MRI. Displacement-encoded MRI assessed contractile function by measuring circumferential strain (E(cc)) and systolic (dE(cc)/dt) and diastolic (dE(cc)/dt(diastolic)) strain rates at Bsl, Dob, and Dob + CCh. Bsl LTCCI was highest in nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)) and increased only in WT and eNOS(-/-) mice with Dob (P < 0.05 vs. Bsl). LTCCI decreased significantly from Dob levels with Dob + CCh in all mice. Contractile function, as assessed by E(cc), was similar in all mice at Bsl. With Dob, E(cc) increased significantly in WT and eNOS(-/-) but not nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)). With Dob + CCh, E(cc) returned to baseline levels in all mice. Systolic blood pressure, measured via tail plethysmography, was highest in eNOS(-/-) mice (P < 0.05 vs. WT and nNOS(-/-)). Mice deficient in nNOS demonstrate increased Bsl LTCC function and an attenuated contractile reserve to Dob, whereas eNOS(-/-) mice demonstrate normal LTCC and contractile function under all conditions. These results suggest that nNOS, not eNOS, plays the dominant role in modulating Ca(2+) cycling in the heart.  相似文献   

17.
Two strains of endothelial nitric oxide synthase (eNOS)-deficient (-/-) mice have been developed that respond differently to myocardial ischemia-reperfusion (MI/R). We evaluated both strains of eNOS(-/-) mice in an in vivo model of MI/R. Harvard (Har) eNOS(-/-) mice (n = 12) experienced an 84% increase in myocardial necrosis compared with wild-type controls (P < 0.05). University of North Carolina (UNC) eNOS(-/-) (n = 10) exhibited a 52% reduction in myocardial injury versus wild-type controls (P < 0.05). PCR analysis of myocardial inducible NO synthase (iNOS) mRNA levels revealed a significant (P < 0.05) increase in the UNC eNOS(-/-) mice compared with wild-type mice, and there was no significant difference between the Har eNOS(-/-) and wild-type mice. UNC eNOS(-/-) mice treated with an iNOS inhibitor (1400W) exacerbated the extent of myocardial necrosis. When treated with 1400W, Har eNOS(-/-) did not exhibit a significant increase in myocardial necrosis. These data demonstrate that two distinct strains of eNOS(-/-) mice display opposite responses to MI/R. Although the protection seen in the UNC eNOS(-/-) mouse may result from compensatory increases in iNOS, other genes may be involved.  相似文献   

18.
The pathophysiology of gestational hypertensive disorders is incompletely defined. T lymphocytes are implicated. Both T and natural killer (NK) cells express RAS and, in implantation sites, NK cells are highly enriched. We hypothesized that T cells and/or NK cells contribute to circulatory control during pregnancy. Using radiotelemetry of arterial pressure, heart rate, and activity, mice without T and B cells (genotypes BALB/c-Rag2(-/-) and NOD.scid) were examined at baseline and across pregnancy. These strains differ in NK cell competency, with Rag2(-/-) being normal and NOD.scid impaired. Circulatory features differed between these inbred strains. Rag2(-/-); had blood pressure responses to pregnancy that did not differ from congenic normal mice. NOD.scid had higher midgestational blood pressure compared with normoglycemic NOD mice (3-5 mm Hg greater than NOD; P < 0.004). In comparison to controls, both T and B strains had much higher heart rates after first trimester that did not remit until parturition (>30 bpm greater than control; P < 0.0001). NOD.scid had additional anomalies, including 90% depletion of circulating NK cells and elevated (57%) proliferation of uterine NK cells within implantation sites. These data demonstrate immune control of midgestational heart rate and suggest NK cells contribute to midpregnancy regulation of mean arterial pressure.  相似文献   

19.
Inbred, congenic and transgenic strains of mice were characterized for acetylation of p-aminobenzoic (PABA) and the carcinogen 4-aminobiphenyl (4ABP). C57Bl/6 mice have the NAT2*8 allele, A/J mice have NAT2*9 and congenic B6.A mice have NAT2*9 on the C57Bl/6 background. The first transgenic strain with human NAT1, the functional equivalent of murine NAT2, was also tested. The murine NAT2*9 allele correlated with a slow phenotype measured with the murine NAT2 selective substrate PABA. The two strains having this allele also had a lower capacity to acetylate 4ABP. A line with five copies of the human NAT1 transgene was bred for at least five generations with either C57Bl/6 or A/J mice. There was no significant change in PABA NAT activity on the C57Bl/6 background but a 2.5-fold increase was seen in hNAT1:A/J compared with A/J. The effect of variation in NATs on 4ABP genotoxicity was assessed in these strains. Twenty-four hours after exposure to a single oral dose of 120 mg 4ABP/kg, hepatic 4ABP-DNA adducts were detected by immunofluoresence in all strains. Nuclear fluorescence intensities (mean+/-S.D.) were 41.1+/-3.6 for C57Bl/6, 37.9+/-1.11 for A/J and 36.3+/-2.44 for B6.A. There was no correlation between murine NAT2 alleles and 4ABP-DNA adduct levels. Similar results were seen with the transgenic strains. The data indicate that the range of variation present in these strains of mice was insufficient to alter susceptibility to 4ABP genotoxicity. The impact of these relatively modest differences in the acetylation of the activation of 4ABP may be masked by other competing biotransformation reactions since 4ABP is a substrate for both NAT1 and NAT2. Mouse models with variation in both isoforms are needed to adequately assess the role of variation in NATs in susceptibility to 4ABP genotoxicity.  相似文献   

20.
Endothelial nitric oxide synthase knock out mice (eNOS‐/‐) are mildly hypertensive in comparison to wild‐type (WT) mice. Hypertension in eNOS‐/‐ mice is partly the result of an increase in peripheral resistance due to the absence of the vasodilatory action of NO. No data are available for these animals regarding the 24 h blood pressure profile under the 12:12 h light‐dark cycle (LD) and constant dark (DD) conditions. Therefore, this study aimed to investigate by radiotelemetry the circadian rhythms in systolic blood pressure (SBP) and diastolic blood pressure (DBP) of six eNOS‐/‐ mice and five wild‐type mice under LD and DD. Data were collected beginning 3 wks after operation (implantation of sensor) for 2 wks under LD and for another 2 wks thereafter under DD. Our results show that eNOS‐/‐ mice were hypertensive under all experimental conditions. SBP and DBP were significantly higher by about 15% in eNOS‐/‐ mice. No differences were found in the pattern of the circadian rhythms, rhythmicity, or period lengths during LD or DD. The genetic deletion of eNOS seems to lead to higher SBP and DBP, but the circadian blood pressure pattern is still preserved with higher values during the night (active phase) and lower values during the daytime (rest phase). Thus, endothelial‐derived NO plays an important role in the regulation of vascular tone and haemodynamics, but it is not important for the circadian organization of SBP and DBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号