首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microencapsulation of cell spheroids in an immunoselective, highly biocompatible, biomembrane offers a way to create viable implantation options in the treatment of insulin-dependent diabetes mellitus (IDDM). Traditionally the encapsulation process has been achieved through the injection/extrusion of alginate/cell mixtures into a calcium chloride solution to produce calcium alginate capsules around the cells. A novel alternative is explored here through a procedure using an emulsion process to produce thin adherent calcium alginate membranes around cell spheroids. In this study, a thorough investigation has been used to establish the emulsion process parameters that are critical to the formation of a coherent alginate coat both on a model spheroid system and subsequently on cell spheroids. Optical and fluorescence microscopy are used to assess the morphology and coherence of the calcium alginate/poly-L-ornithine/alginate (APA) capsules produced.  相似文献   

2.
Numerous bacteria are able to use free and haemoprotein-bound haem as iron sources because of the action of small secreted proteins called haemophores. Haemophores have very high affinity for haem, and can therefore extract haem from the haem-carrier proteins and deliver it to the cells by means of specific cell surface receptors. Haem is then taken up and the empty haemophores are recycled. Here, we report a study of the regulation of the Serratia marcescens has operon which is involved in haemophore-dependent haem acquisition. We characterized two genes encoding proteins homologous to specific ECF sigma and antisigma factors. We showed that they regulate the synthesis of the haemophore-specific outer membrane receptor, HasR, by a signal transduction mechanism similar to the siderophore surface-signalling systems. We also showed the essential role of HasR itself in this process. Using haem-loaded and haem-free haemophore, we identified the stimulus for the HasR-mediated signal transduction as being the binding of the haem-loaded haemophore to HasR. Thus, unlike siderophore-uptake systems, in which the signalling molecule is the transported substrate itself, in the haemophore-dependent haem uptake system the inducer and the transported substrate are different compounds.  相似文献   

3.
The mitochondrial inner membrane of Saccharomyces cerevisiae contains a group of homologous carrier proteins that mediate the exchange of several metabolites. The members of this protein family are synthesized in the cytosol and reach their final topology after translocation across the mitochondrial outer membrane. Using the ADP/ATP carrier (AAC) as a model protein, previous studies have established four distinct steps of the import pathway (stages I-IV). In the absence of the mitochondrial membrane potential (deltapsi), the AAC accumulates at the inner surface of the outer membrane (stage IIIa) and remains bound to the outer membrane import channel. Only in the presence of the membrane potential, can a complex of small Tim proteins mediate transfer of the AAC to the inner membrane. In this study, we characterized the import pathway of the dicarboxylate carrier (DIC). Different from the AAC, the DIC showed complete deltapsi-independent translocation across the outer membrane, release from the import pore, and mainly accumulated in a soluble state in the intermembrane space, thus defining a new translocation intermediate (stage III*). The DIC should be a suitable model protein for the characterization of deltapsi-independent functions of the intermembrane space Tim proteins.  相似文献   

4.
Human thyroperoxidase (hTPO), a type I transmembrane glycoprotein, plays a key role in thyroid hormone synthesis. In a previous paper (Fayadat, L., Niccoli, P., Lanet, J., and Franc, J. L. (1998) Endocrinology 139, 4277-4285) we established that after the synthesis, only 15-20% of the hTPO molecules were recognized by a monoclonal antibody (mAb15) directed against a conformational structure and that only 2% were able to reach the cell surface. In the present study using pulse-chase experiments in the presence or absence of protease inhibitors followed by immunoprecipitation procedures with monoclonal antibodies recognizing unfolded or partially folded hTPO forms we show that: (i) unfolded hTPO forms are degraded by the proteasome and (ii) partially folded hTPO forms are degraded by other proteases. It was also established upon incubating endoplasmic reticulum (ER) membranes in vitro that the degradation of the partially folded hTPO was carried out by serine and cysteine integral ER membrane proteases. These data provide valuable insights into the quality control mechanisms whereby the cells get rid of misfolded or unfolded proteins. Moreover, this is the first study describing a protein degradation process involving two distinct degradation pathways (proteasome and ER cysteine/serine proteases) at the ER level, depending on the folding state of the protein.  相似文献   

5.
Cytosolically synthesized thylakoid proteins must be translocated across the chloroplast envelope membranes, traverse the stroma, and then be translocated into or across the thylakoid membrane. Protein transport across the envelope requires ATP hydrolysis but not electrical or proton gradients. The energy requirements for the thylakoid translocation step were studied here for the light-harvesting chlorophyll a/b protein (LHCP), an integral membrane protein, and for several thylakoid lumen-resident proteins: plastocyanin and OE33, OE23, and OE17 (the 33-, 23-, and 17-kDa subunits of the oxygen-evolving complex, respectively). Dissipation of the thylakoid protonmotive force during an in organello protein import assay partially inhibited the thylakoid localization of LHCP and OE33, totally inhibited localization of OE23 and OE17, and had no effect on localization of plastocyanin. We used reconstitution assays for LHCP insertion and for OE23 and OE17 transport into isolated thylakoids to investigate the energy requirements in detail. The results indicated that LHCP insertion absolutely requires ATP hydrolysis and is enhanced by a transthylakoid delta pH and that transport of OE23 and OE17 is absolutely dependent upon a delta pH. Surprisingly, OE23 and OE17 transport occurred maximally in the complete absence of ATP. These results establish the thylakoid membrane as the only membrane system in which a delta pH can provide all of the energy required to translocate proteins across the bilayer. They also demonstrate that the energy requirements for integration into or translocation across the thylakoid membranes are protein-specific.  相似文献   

6.
Tom40 forms the central channel of the preprotein translocase of the mitochondrial outer membrane (TOM complex). The precursor of Tom40 is encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via a multi-step assembly pathway that involves the mature TOM complex and the sorting and assembly machinery of the outer membrane (SAM complex). We report that opening of the mitochondrial intermembrane space by swelling blocks the assembly pathway of the beta-barrel protein Tom40. Mitochondria with defects in small Tim proteins of the intermembrane space are impaired in the Tom40 assembly pathway. Swelling as well as defects in the small Tim proteins inhibit an early stage of the Tom40 import pathway that is needed for formation of a Tom40-SAM intermediate. We propose that the biogenesis pathway of beta-barrel proteins of the outer mitochondrial membrane not only requires TOM and SAM components, but also involves components of the intermembrane space.  相似文献   

7.
《Mycoscience》2020,61(4):151-154
The relative abundance of ectomycorrhizal (ECM) roots in pure and mixed stand compositions of Dryas octopetala, Salix repens and Arctostaphylos uva-ursi grown in Scottish coastal arctic/alpine relict habitat was described through ECM morphotyping and comparisons of fungal internal transcribed spacer sequences. Neither specific ECM morphotypes nor the morphotype communities were found in association with any stand compositions. The proportions of the ECM roots on S. repens, however, were significantly less in pure stand and were further decreased in mixed with A. uva-ursi. Possible factors contributing the reduction, including the effects by other host species grown in proximity, are discussed.  相似文献   

8.
Pathogenic Yersiniae adhere to and kill macrophages by targeting some of their Yop proteins into the eukaryotic cytosol. There is debate about whether YopE targeting proceeds as a direct translocation of polypeptide between cells or in two distinct steps, each requiring specific signals for YopE secretion across the bacterial envelope and for translocation into the eukaryotic cytosol. Here, we used the selective solubilization of the eukaryotic plasma membrane with digitonin to measure Yop targeting during Yersinia infections of HeLa cells. YopE, YopH, YopM and YopN were found in the eukaryotic cytosol but not in the extracellular medium. When bound to SycE chaperone in the Yersinia cytoplasm, YopE residues 1–100 are necessary and sufficient for the targeting of hybrid neomycin phosphotransferase. Electron microscopic analysis failed to detect an extracellular intermediate of YopE targeting, suggesting a one-step translocation mechanism.  相似文献   

9.
An opaque screen moving overhead elicits an escape response in the crab Chasmagnathus that after a few presentations habituates for a long period (long-term habituation). Two types of long-term habituation were previously described: the (context-signal)-long-term habituation yielded by spaced training – context dependent, cycloheximide sensitive and long lasting; and the (signal)-long-term habituation yielded by massed training – context independent, cycloheximide insensitive and shorter lasting. Present research is focused on the defensive strategies crabs display during acquisition of both long-term habituations, using video analysis as the main method of study. Aside from the escape response, Chasmagnathus shows a rigid motionless display, an alternative defensive response we term freezing response. The escape response is predominantly exhibited at night and in summer months, while freezing occurs during day light hours and in winter months. During acquisition of (signal)-long-term habituation, the escape response vanishes without being replaced by freezing. During acquisition of (context-signal)-long-term habituation, the escape response vanishes and is replaced by a strong freezing that finally becomes the only defensive strategy. The former, but not the latter, meets the current concept of habituation. Accepted: 1 December 1998  相似文献   

10.
11.
Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein.  相似文献   

12.
In Pseudomonas putida U, the degradation of n-alkanoic and n-phenylalkanoic acids is carried out by two sets of beta-oxidation enzymes (betaI and betaII). Whereas the first one (called betaI) is constitutive and catalyses the degradation of n-alkanoic and n-phenylalkanoic acids very efficiently, the other one (betaII), which is only expressed when some of the genes encoding betaI enzymes are mutated, catabolizes n-phenylalkanoates (n > 4) much more slowly. Genetic studies revealed that disruption or deletion of some of the betaI genes handicaps the growth of P. putida U in media containing n-alkanoic or n-phenylalkanoic acids with an acyl moiety longer than C4. However, all these mutants regained their ability to grow in media containing n-alkanoates as a result of the induction of betaII, but they were still unable to catabolize n-phenylalkanoates completely, as the betaI-FadBA enzymes are essential for the beta-oxidation of certain n-phenylalkanoyl-CoA derivatives when they reach a critical size. Owing to the existence of the betaII system, mutants lacking betaIfadB/A are able to synthesize new poly 3-OH-n-alkanoates (PHAs) and poly 3-OH-n-phenylalkanoates (PHPhAs) efficiently. However, they are unable to degrade these polymers, becoming bioplastic overproducer mutants. The genetic and biochemical importance of these results is reported and discussed.  相似文献   

13.
Chloroplast membranes contain firmly bound nucleotides. Their synthesis seems not to be dependent on energy. The amount of labelled firmly bound ATP extracted from membranes after incubation in the light of the presence of32Pi is only slightly affected by uncouplers such as desaspidin and CCCP or energy transfer inhibitors as pholorinzin at concentrations where steady state phosphorylation is completely abolished. With Dio-9 or NEM, however, the labelling of firmly bound ATP is lowered to a similar extent as the steady state phosphorylation. These effects can be explained assuming a direct modification of the coupling factor. The results of a two stage inclubation experiment using a rapid filtration technique support our earlier hypothesis that the γP in the liberated ATP does not origin from the previously built phosphorylated intermediate.  相似文献   

14.
Mizusawa N  Tomo T  Satoh K  Miyao M 《Biochemistry》2003,42(33):10034-10044
The D1 protein of the photosystem II reaction center turns over the most rapidly of all the proteins of the thylakoid membrane under illumination in vivo. In vitro, the D1 protein sustained cleavage in a surface-exposed loop (DE loop) or cross-linking with another reaction center protein, the D2 protein or cytochrome b(559), under illumination. We found that the D1 protein was damaged in essentially the same way in vivo, although the resultant fragments and cross-linked adducts barely accumulated due to digestion by proteases. In vitro studies detected a novel stromal protease(s) that digested the adducts but not the monomeric D1 protein. These observations suggest that, in addition to cleavage, the cross-linking reactions themselves are processes involved in complete degradation of the D1 protein in vivo. Peptide mapping experiments located the cross-linking sites with the D2 protein among residues 226-244, which includes the cross-linking site with cytochrome b(559) [Barbato, R., et al. (1995) J. Biol. Chem. 270, 24032-24037], in the N-terminal part of the DE loop, while N-terminal amino acid sequencing of the fragment located the cleavage site around residue 260 in the C-terminal part of the loop. We propose a model explaining the occurrence of simultaneous cleavage and cross-linking and discuss the mechanisms of complete degradation of the D1 protein in vivo.  相似文献   

15.
采用空间直观景观模型(LANDIS)模拟了3种不同经营措施(假设1987年未发生特大火灾,完全依靠天然更新(M1);1987年特大火灾发生后依靠天然更新(M2)和火灾后采取目前森林经营措施 (M3))下图强林业局落叶松及其成过熟林300年的动态变化.结果表明:林业局整体水平上,M1和M3方案下落叶松林面积占森林总面积的比例明显高于M2方案.M3方案下落叶松面积比例开始时低于M1方案,但由于大规模的人工更新,随后迅速增加,约100年后赶上M1方案.不同经营措施对落叶松面积百分比影响较大,并对其年龄结构有显著影响.M1方案下落叶松成过熟林面积比例明显高于M2方案;而在M3方案下,由于火后10年大规模的森林采伐,落叶松成过熟林的面积比例锐减,随后逐渐增加,但需要近100年才能达到并超过其他2种方案.此外,在火烧区和未火烧区,落叶松及其成过熟林在不同经营措施下的变化趋势存在明显差异.  相似文献   

16.
Abstract. Climate sets the limits to plant growth but does climate determine the global distribution of major biomes? I suggest methods for evaluating whether vegetation is largely climate or consumer‐controlled, focusing on large mammal herbivores and fire as influential consumers. Large parts of the world appear not to be at equilibrium with climate. Consumer‐controlled ecosystems are ancient and diverse. Their distinctive ecology warrants special attention.  相似文献   

17.
Mutants of Corynebacterium diphtheriae C7(beta) that are resistant to the inhibitory effects of iron on toxinogenesis were identified by their ability to form colonies surrounded by toxin-antitoxin halos on agar medium containing both antitoxin and a high concentration of iron. Chromosomal mutations were essential for the altered phenotypes of four independently isolated mutant strains. During growth in deferrated liquid medium containing various amounts of added iron, these mutants differed from wild-type C. diphtheriae C7(beta) in several ways. Their growth rates were slower under low-iron conditions and were stimulated to various degrees under high-iron conditions. The concentrations of iron at which optimal toxin production occurred were higher for the mutants than for wild-type C. diphtheriae C7(beta). Toxin production by the mutants during growth in low-iron medium occurred throughout the period of exponential growth at nearly constant rates that were proportional to the bacterial growth rates. In contrast, toxin production by wild-type C. diphtheriae C7(beta) in similar low-iron cultures occurred predominantly during the late exponential phase, when iron was a growth-limiting nutrient. Additional studies demonstrated that these mutants had severe defects in their transport systems for ferric iron. We propose that the altered regulation of toxinogenesis by iron in our mutants was caused by the severe defects in their iron transport systems. As a consequence, the mutants exhibited a low-iron phenotype during growth under conditions that permitted wild-type C. diphtheriae C7(beta) to exhibit a high-iron phenotype.  相似文献   

18.
We have reported previously the cloning and characterization of human and mouse protein kinase B gamma (PKB gamma), the third member of the PKB family of second messenger-regulated serine/threonine kinases (Brodbeck, D., Cron, P., and Hemmings, B. A. (1999) J. Biol. Chem. 274, 9133--9136). Here we report the isolation of human and mouse PKB gamma 1, a splice variant lacking the second regulatory phosphorylation site Ser-472 in the hydrophobic C-terminal domain. Expression of PKB gamma 1 is low compared with PKB gamma, and it is regulated in different human tissues. We show that PKB gamma and PKB gamma 1 differ in their response to stimulation by insulin, pervanadate, peroxide, or okadaic acid. Activation of PKB gamma 1 requires phosphorylation at a single regulatory site Thr-305. Interestingly, this site is phosphorylated to a higher extent in PKB gamma compared with PKB gamma 1 upon maximal stimulation by pervanadate, and this is reflected in the respective specific kinase activities. Furthermore, upon insulin stimulation of transfected cells, PKB gamma 1 translocates to the plasma membrane to a lesser extent than PKB gamma. Taken together, these results suggest that phosphorylation of the hydrophobic motif at the extreme C terminus of PKB gamma may facilitate translocation of the kinase to the membrane and/or its phosphorylation on the activation loop site by phosphoinositide-dependent protein kinase-1.  相似文献   

19.
20.
Intramolecular electron transfer over 12 A from heme c to heme d(1) was investigated in cytochrome cd(1) nitrite reductase from Pseudomonas aeruginosa, following reduction of the c heme by pulse radiolysis. The rate constant for the transfer is relatively slow, k = 3 s(-1). The present observations contrast with a corresponding rate of electron transfer, 1.4 x 10(3) s(-1), measured for cytochrome cd(1) from Paracoccus pantotrophus, though the relative positions of the two heme groups are the same in both enzymes. The rate of intramolecular electron transfer within the enzyme from P. aeruginosa was accelerated 10(4)-fold (1.4 x 10(4) s(-1)) by the binding of cyanide to the d(1) heme. A coordination change at the d(1) heme upon its reduction is suggested to be a major factor in determining the slow rate of electron transfer in the P. aeruginosa enzyme in the absence of cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号