首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic fructose-1,6-bisphosphatase was purified to apparent homogeneity from the leaves of apple, a sorbitol synthesizing species. The enzyme was a homotetramer with a subunit mass of 37 kDa, and was highly specific for fructose 1,6-bisphosphate (F1,6BP) with a Km of 3.1 micro M and a Vmax of 48 units (mg protein)(-1). Either Mg2+ or Mn2+ was required for its activity with a Km of 0.59 mM and 62 micro M, respectively. Li+, Ca2+, Zn2+, Cu2+ and Hg2+ inhibited whereas Mn2+ enhanced the Mg2+ activated enzyme activity. Fructose 6-phosphate (F6P) was found to be a mixed type inhibitor with a Ki of 0.47 mM. Fructose 2,6-bisphosphate (F2,6BP) competitively inhibited the enzyme activity and changed the substrate saturation curve from hyperbolic to sigmoidal. AMP was a non-competitive inhibitor for the enzyme. F6P interacted with F2,6BP and AMP in a synergistic way to inhibit the enzyme activity. Dihydroxyacetone phosphate slightly inhibited the enzyme activity in the presence or absence of F2,6BP. Sorbitol increased the susceptibility of the enzyme to the inhibition by high concentrations of F1,6BP. High concentrations of sorbitol in the reaction mixture led to a reduction in the enzyme activity.  相似文献   

2.
A cDNA encoding fructose(1,6)bisphosphatase was isolated from total human lung RNA. The cDNA contained an open reading frame encoding 337 amino acids. The determined nucleotide sequence of the lung cDNA was significantly different from muscle cDNA and slightly differed from human liver cDNA in a single mutation (Gly-336 for Ala-336) and a T for C substitution in position 648. The human lung fructose(1, 6)bisphosphatase [Fru(1,6)Pase] was isolated and its kinetic parameters were compared with liver and muscle isoenzymes. Values of kcat for the lung Fru(1,6)Pase were lower than for the liver and muscle enzyme. Like the liver isoenzyme, lung Fru(1,6)Pase is significantly less inhibited by AMP than the muscle enzyme. The values of I0.5 were 9.5, 9.8, and 0.3 microM for the liver, lung, and muscle enzyme, respectively. The lung enzyme was slightly more sensitive to fructose(2,6)bisphosphate [Fru(2,6)P2] inhibition than the liver enzyme. Ki was 75 microM for the lung and 96 microM for the liver enzyme. The synergistic effect of AMP and Fru(2,6)P2 on the lung and liver Fru(1,6)Pase was also observed. In the presence of AMP the corresponding values of Ki for Fru(2,6)P2 were 16 microM for the lung and 10 microM for the liver enzyme.  相似文献   

3.
1H and 31P nuclear magnetic resonance was used to investigate the interaction of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) with bovine liver fructose-1,6-bisphosphatase. Mn2+ bound to fructose-1,6-bisphosphatase was used as a paramagnetic probe to map the active and AMP allosteric sites of fructose-1,6-bisphosphatase. Distances between enzyme-bound Mn2+ and the phosphorus atoms at C-6 of fructose-6-P and alpha-methyl-D-fructofuranoside 1,6-bisphosphate were identical, and the enzyme-Mn to phosphorus distance determined for the C-6 phosphorus atom of Fru-2,6-P2 was very similar to these values. Likewise, the enzyme-Mn to phosphorus distances for Pi, the C-1 phosphorus atom of alpha-methyl-D-fructofuranoside 1,6-bisphosphate, and the C-2 phosphorus atom of Fru-2,6-P2 agreed within 0.5 A. The distance between enzyme-bound Mn2+ and the phosphorus atom of AMP was significantly shorter than the distances obtained for any of the aforementioned ligands, but the presence of Fru-2,6-P2 caused the enzyme-Mn to phosphorus distance for AMP to lengthen markedly. NMR line broadening of AMP protons was studied at various temperatures. The dissociation rate constant was found to be greater than 20 s-1. It was concluded that Fru-2,6-P2 strongly affects the interaction of AMP with fructose-1,6-bisphosphatase and that the sugar most likely acts at the active site of the enzyme.  相似文献   

4.
Fructose-1,6-bisphosphatase from bovine brain tissue has been purified to near homogeneity. This enzyme is similar to other mammalian fructose-1,6-bisphosphatases in many respects, and its properties are distinctly different from those reported for the enzyme from rat brain [A. L. Majumder and F. Eisenberg (1977) Proc. Natl. Acad. Sci. USA 74, 3222-3225; S. Chattoraj and A. L. Majumder (1986) Biochem. Biophys. Res. Commun. 139, 571-580]. The bovine enzyme (sp act 4, pH ratio (7.5/9.6) = 3.6) has a pH optimum of 7.5. The Km is 2 microM. Divalent metal ion is required for activity, and Vmax is obtained at either 4 mM Mg2+ or 0.3 mM Mn2+. Fructose 2,6-bisphosphate is a competitive inhibitor (Ki = 0.07 microM), and AMP a noncompetitive inhibitor (kis = 24 microM, Kii = 10 microM) of bovine brain fructose-1,6-bisphosphatase. The enzyme activity is enhanced by small amounts of EDTA relative to metal, and AMP inhibits fructose-1,6-bisphosphatase in either the presence or absence of the metal chelator; however, AMP is more effective in the absence of EDTA.  相似文献   

5.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

6.
Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate   总被引:20,自引:0,他引:20  
Rat liver fructose-1,6-bisphosphatase, which was assayed by measuring the release of 32P from fructose 1,6-[1-32P]bisphosphate at pH 7.5, exhibited hyperbolic kinetics with regard to its substrate. beta-D-Fructose 2,6-bisphosphate, an activator of hepatic phosphofructokinase, was found to be a potent inhibitor of the enzyme. The inhibition was competitive in nature and the Ki was estimated to be 0.5 microM. The Hill coefficient for the reaction was 1.0 in the presence and absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate also enhanced inhibition of the enzyme by the allosteric inhibitor AMP. The possible role of fructose 2,6-bisphosphate in the regulation of substrate cycling at the fructose-1,6-bisphosphatase step is discussed.  相似文献   

7.
Lysine 274 is conserved in all known fructose-1,6-bisphosphatase sequences. It has been implicated in substrate binding and/or catalysis on the basis of reactivity with pyridoxal phosphate as well as by x-ray crystallographic analysis. Lys274 of rat liver fructose-1,6-bisphosphatase was mutated to alanine by the polymerase chain reaction, and the T7-RNA polymerase-transcribed construct containing the mutant sequence was expressed in Escherichia coli. The mutant and wild-type forms of the enzyme were purified to homogeneity, and their specific activity, substrate dependence, and inhibition by fructose 2,6-bisphosphate and AMP were compared. While the mutant exhibited no change in maximal velocity, its Km for fructose 1,6-bisphosphate was 20-fold higher than that of the wild-type, and its Ki for fructose 2,6-bisphosphate was increased 1000-fold. Consistent with the unaltered maximal velocity, there were no apparent difference between the secondary structure of the wild-type and mutant enzyme forms, as measured by circular dichroism and ultraviolet difference spectroscopy. The Ki for the allosteric inhibitor AMP was only slightly increased, indicating that Lys274 is not directly involved in AMP inhibition. Fructose 2,6-bisphosphate potentiated AMP inhibition of both forms, but 500-fold higher concentrations of fructose 2,6-bisphosphate were needed to reduce the Ki for AMP for the mutant compared to the wild-type. However, potentiation of AMP inhibition of the Lys274----Ala mutant was evident at fructose 2,6-bisphosphate concentrations (approximately 100 microM) well below those that inhibited the enzyme, which suggests that fructose 2,6-bisphosphate interacts either with the AMP site directly or with other residues involved in the active site-AMP synergy. The results also demonstrate that although Lys274 is an important binding site determinant for sugar bisphosphates, it plays a more significant role in binding fructose 2,6-bisphosphate than fructose 1,6-bisphosphate, probably because it binds the 2-phospho group of the former while other residues bind the 1-phospho group of the substrate. It is concluded that the enzyme utilizes Lys274 to discriminate between its substrate and fructose 2,6-bisphosphate.  相似文献   

8.
Limited tryptic digestion of pig kidney fructose-1,6-bisphosphatase in the presence of magnesium ions results in the formation of an active enzyme derivative which is no longer inhibited by the allosteric effector AMP. The presence of AMP during incubation of fructose-1,6-bisphosphatase with trypsin protects against the loss of AMP inhibition. By contrast, the presence of the nonhydrolyzable substrate analog fructose 2,6-bisphosphate accelerates the rate of formation of that form of fructose-1,6-bisphosphatase which is insensitive to AMP inhibition. Sodium dodecyl sulfate-polyacrylamide electrophoresis of samples taken during trypsin treatment shows that the loss of AMP inhibition parallels the conversion of the native 36,500 molecular weight fructose-1,6-bisphosphatase subunit into a 34,000 molecular weight species. Automated Edman degradation of trypsin-treated fructose-1,6-bisphosphatase following gel filtration shows a single sequence beginning at Gly-26 in the original enzyme, but no changes in the COOH-terminal region of fructose-1,6-bisphosphatase. Thus, the proteolytic product has been characterized as "des-1-25-fructose-1,6-bisphosphatase." A comparison of the kinetic properties of control enzyme and des-1-25-fructose-1,6-bisphosphatase reveals some differences in properties (pH optimum, Ka for Mg2+, K+ activation, inhibition by fructose 2,6-bisphosphate) between the two enzymes, but none is so striking as the complete loss of AMP sensitivity shown by des-1-25-fructose-1,6-bisphosphatase. The loss of AMP inhibition is due to the loss of AMP-binding capacity, but it is not known at this stage whether residues of the AMP site are present in the 25-amino acid NH2-terminal region or the removal of this region leads to a conformational change that abolishes the function of an AMP site located elsewhere in the molecule.  相似文献   

9.
Anilinoquinazolines currently of interest as inhibitors of tyrosine kinases have been found to be allosteric inhibitors of the enzyme fructose 1,6-bisphosphatase. These represent a new approach to inhibition of F16BPase and serve as leads for further drug design. Enzyme inhibition is achieved by binding at an unidentified allosteric site.  相似文献   

10.
F Marcus 《Biochemistry》1976,15(16):3505-3509
Modification of pig kidney fructose-1,6-bisphosphatase with 2,3-butanedione in borate buffer (pH 7.8) leads to the loss of the activation of the enzyme by monovalent cations, as well as to the loss of allosteric adenosine 5'-monophosphate (AMP) inhibition. In agreement with the results obtained for the butanedione modification of arginyl residues in other enzymes, the effects of modification can be reversed upon removal of excess butanedione and borate. Significant protection to the loss of K+ activation was afforded by the presence of the substrate fructose 1,6-bisphosphate, whereas AMP preferentially protected against the loss of AMP inhibition. The combination of both fructose 1,6-bisphosphate and AMP fully protected against the changes in enzyme properties on butanedione treatment. Under the latter conditions, one arginyl residue per mole of enzyme subunit was modified, whereas three arginyl residues were modified by butanedione under conditions leading to the loss of both potassium activation and AMP inhibition. Thus, the modification of two arginyl residues per subunit would appear to be responsible for the change in enzyme properties. The present results, as well as those of a previous report on the subject (Marcus, F. (1975), Biochemistry 14, 3916-3921) support the conclusion that one arginyl residue per subunit is essential for monovalent cation activation, and another arginyl residue is essential for AMP inhibition. A likely role of the latter residue could be its involvement in the binding of the phosphate group of AMP.  相似文献   

11.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

12.
Fructose 2,6-bisphosphate inhibited all three fructose-1,6-bisphosphatases from the liver, intestine, and muscle of the mouse. The sensitivity of the liver enzyme to the inhibitor was significantly diminished when Mg2+ was replaced by Mn2+ as the activating cation. Inhibition of the liver enzyme by fructose 2,6-bisphosphate decreased as the concentration of the metal activator, Mn2+ or Mg2+, increased. The respective I50 values obtained by extrapolation of metal ion concentrations to zero were 40 microM with Mn2+ and 0.25 microM with Mg2+. The extent of desensitization to either fructose 2,6-bisphosphate or AMP inhibition by Mn2+ decreased in the order of the liver, intestine, and muscle enzyme. Only in the case of the liver enzyme was the substrate cooperativity induced by fructose 2,6-bisphosphate in the presence of Mg2+. In all three isoenzymes from the mouse, fructose 2,6-bisphosphate greatly potentiated the AMP inhibition of the enzyme in the presence of either Mg2+ or Mn2+. The liver enzyme with Mn2+ in addition to Mg2+ was still active in the presence of less than 1 microM fructose 2,6-bisphosphate, even though AMP was present at 100-200 microM.  相似文献   

13.
The properties of dephospho- and phosphofructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae and of two mutant enzymes in which the phosphorylatable Ser11 had been changed by site-directed mutagenesis (Ser----Ala and Ser----Asp) were studied to clarify the role of cyclic AMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase. The mutant enzymes and wild type Ser11 fructose-1,6-bisphosphatase were overexpressed and purified to homogeneity. Phosphofructose-1,6-bisphosphatase was prepared by in vitro phosphorylation. The comparison of the properties of the above enzymes demonstrated that all four had similar maximum activity. However, the phosphoenzyme was about 3-fold more sensitive to AMP and fructose 2,6-bisphosphate inhibition than the dephosphoenzyme, suggesting that regulation operates in vivo by this mechanism, leading to decreased enzyme activity. The purified mutant enzymes Ala11 and Asp11 exhibited properties closely similar to those of dephospho- and phosphofructose-1,6-bisphosphatase, respectively. These results indicate that the functional group at residue 11 is an important factor in the regulation of fructose-1,6-bisphosphatase activity and that Ser(P) can be functionally substituted by Asp in this enzyme.  相似文献   

14.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

15.
Purified fructose-1,6-bisphosphatase from Saccharomyces cerevisiae was phosphorylated in vitro by purified yeast cAMP-dependent protein kinase. Maximal phosphorylation was accompanied by an inactivation of the enzyme by about 60%. In vitro phosphorylation caused changes in the kinetic properties of fructose-1,6-bisphosphatase: 1) the ratio R(Mg2+/Mn2+) of the enzyme activities measured at 10 mM Mg2+ and 2 mM Mn2+, respectively, decreased from 2.6 to 1.2; 2) the ratio R(pH 7/9) of the activities measured at pH 7.0 and pH 9.0, respectively, decreased from 0.62 to 0.38, indicating a shift of the pH optimum to the alkaline range. However, the affinity of the enzyme for its inhibitors fructose-2,6-bisphosphate (Fru-2,6-P2) and AMP, expressed as the concentration required for 50% inhibition, was not changed. The maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase was 0.6-0.75 mol/mol of the 40-kDa subunit. Serine was identified as the phosphate-labeled amino acid. The initial rate of in vitro phosphorylation of fructose-1,6-bisphosphatase, obtained with a maximally cAMP-activated protein kinase, increased when Fru-2,6-P2 and AMP, both potent inhibitors of the enzyme, were added. As Fru-2,6-P2 and AMP did not affect the phosphorylation of histone by cAMP-dependent protein kinase, the inhibitors must bind to fructose-1,6-bisphosphatase in such a way that the enzyme becomes a better substrate for phosphorylation. Nevertheless, Fru-2,6-P2 and AMP did not increase the maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase beyond that observed in the presence of cAMP alone.  相似文献   

16.
Characterization of rat muscle fructose 1,6-bisphosphatase   总被引:1,自引:0,他引:1  
Fructose 1,6-bisphosphatase has been purified from rat muscle. Although the specific activity of the enzyme in the crude extract of rat muscle was extremely low, purification by the present procedure is highly reproducible. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis. The subunit molecular weight of the muscle enzyme was 37,500 in contrast to 43,000 in the case of the liver enzyme. Immunoreactivity of the muscle enzyme to anti-muscle and anti-liver fructose 1,6-bisphosphatase sera was clearly distinct from that of the liver enzyme. All one-dimensional peptide mappings of the muscle enzyme with staphylococcal V8 protease, chymotrypsin, and papain showed different patterns from those of the liver enzyme. When incubated with subtilisin, the extent of activation of muscle fructose 1,6-bisphosphatase at pH 9.1 was smaller than that of the liver enzyme. The subtilisin digestion pattern of the muscle enzyme on SDS-polyacrylamide gel electrophoresis was distinct from that of the liver enzyme. The AMP-concentration giving 50% inhibition of the muscle enzyme was 0.54 microM, whereas that of the liver enzyme was 85 microM. The concentrations of fructose 2,6-bisphosphate that gave 50% inhibition of rat muscle and liver enzymes were 6.3 and 1.5 microM, respectively. Fructose 1,6-bisphosphatase protein was not detected in soleus muscle by immunoelectroblotting with anti-muscle fructose 1,6-bisphosphatase serum.  相似文献   

17.
The alpha- and beta-anomers of arabinose 1,5-bisphosphate and ribose 1,5-bisphosphate were tested as effectors of rat liver 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase. Both anomers of arabinose 1,5-bisphosphate activated the kinase and inhibited the bisphosphatase. The alpha-anomer was the more effective kinase activator while the beta-anomer was the more potent inhibitor of the bisphosphatase. Inhibition of the bisphosphatase by both anomers was competitive, and both potentiated allosteric inhibition by AMP. beta-Arabinose 1,5-bisphosphate was also more effective in decreasing fructose 2,6-bisphosphate binding to the enzyme. Neither anomer of ribose 1,5-bisphosphate affected 6-phosphofructo-1-kinase or fructose-1,6-bisphosphatase, indicating that the configuration of the C-2 (C-3 in Fru 2,6-P2) hydroxyl group is important for biological activity. These results are also consistent with arabinose 1,5-bisphosphate binding to the active site and thereby enhancing the interaction of AMP with the allosteric site.  相似文献   

18.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

19.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

20.
Modification of a highly reactive cysteine residue of pig kidney fructose 1,6-bisphosphatase with N-ethylmaleimide results in the loss of activation of the enzyme by monovalent cations. Low concentrations of fructose 2,6-bisphosphate or high (inhibitory) levels of fructose 1,6-bisphosphate protect the enzyme against the loss of monovalent cation activation, while non-inhibitory concentrations of the substrate gave partial protection. The allosteric inhibitor AMP markedly increases the reactivity of the cysteine residue. The results indicate that fructose 2,6-bisphosphate can protect the enzyme against the loss of potassium activation by binding to an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit the enzyme by binding to this allosteric site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号