首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Portal hypertension has been studied in the rat to see if it is associated to altered blood volume composition, as it has been shown in other species. Plasma volume was measured by isotope dilution using 99mTc labelled albumin in three groups of male Sprague-Dawley rats: normal rats (controls), partially ligated portal vein rats and rats with Cl4C induced cirrhosis. Plasma volume was significantly higher in rats with portal hypertension due to partially ligated portal vein and cirrhosis than in control animals. Similarly, the calculated blood volume was also significantly higher in the portal hypertensive animals than in control group. Portal hypertension in the rat, therefore, has been demonstrated to be associated to a marked hypervolemia and this finding should be taken into consideration in haemodynamic and pharmacokinetic studies in portal hypertensive rat models.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Acute administration of ethanol increases portal blood flow by 40-60%. This increase in blood flow compensates for the increase in O2 consumption that follows alcohol intake and may play a protective role against hypoxic hepatocellular necrosis. We have investigated the mechanism of this hemodynamic effect of ethanol in the rat using the labeled microsphere technique. We ruled out a direct role of systemic glucagon and of acetaldehyde in mediating the increase in portal flow. However, the increase in flow is maximal at a blood ethanol concentration of 3.5 mM, corresponding to that required to achieve the Vmax of alcohol dehydrogenase, and is suppressed by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase. Alcohol ingestion results in zonal liver hypoxia and in increases in acetate, both of which have been shown to increase the levels of adenosine, a potent vasodilator, in blood and tissues. Ethanol produces a 400% increase in arterial adenosine. Adenosine infusion leads to a dose-dependent increase in portal blood flow of up to 100%, an effect that is suppressed by administration of 8-phenyltheophylline, an antagonist of adenosine at A1 and A2 receptors. Similarly, the ethanol-induced increase in portal blood flow is fully suppressed by 8-phenyltheophylline. In conclusion, adenosine appears to play an important role in the mechanism by which ethanol increases portal blood flow.  相似文献   

11.
12.
The purpose ofthis study was to examine the bioenergetics and regulation ofO2 uptake(O2) and force productionin contracting muscle when blood flow was moderately reduced during asteady-state contractile period. Canine gastrocnemius muscle(n = 5) was isolated, and 3-minstimulation periods of isometric, tetanic contractions were elicitedsequentially at rates of 0.25, 0.33, and 0.5 contractions/s (Hz)immediately followed by a reduction of blood flow [ischemic (I)condition] to 46 ± 3% of the value obtained at 0.5 Hz with normal blood flow. TheO2 of thecontracting muscle was significantly (P < 0.05) reduced during the Icondition [6.5 ± 0.8 (SE) ml · 100 g1 · min1]compared with the same stimulation frequency with normal flow (11.2 ± 1.5 ml · 100 g1 · min1),as was the tension-time index (79 ± 12 vs. 123 ± 22 N · g1 · min1,respectively). The ratio ofO2 to tension-time indexremained constant throughout all contraction periods. Musclephosphocreatine concentration, ATP concentration, and lactate effluxwere not significantly different during the I condition compared withthe 0.5-Hz condition with normal blood flow. However, at comparable rates of O2 andtension-time index, muscle phosphocreatine concentration and ATPconcentration were significantly less during the I condition comparedwith normal-flow conditions. These results demonstrate that, in thishighly oxidative muscle, the normal balance ofO2 supply to force output wasmaintained during moderate ischemia by downregulation of forceproduction. In addition,1) the minimal disruption inintracellular homeostasis after the initiation of ischemia waslikely a result of steady-state metabolic conditions having alreadybeen activated, and 2) thedifference in intracellular conditions at comparable rates ofO2 and tension-time index between the normal flow and I condition may have been due to altered intracellular O2 tension.

  相似文献   

13.
14.
15.
16.
17.
18.
Current large animal models that could closely resemble the typical features of cirrhotic portal hypertension in human have not been well established. Thus, we aimed to develop and describe a reliable and reproducible canine cirrhosis model of portal hypertension. A total of 30 mongrel dogs were randomly divided into four groups: 1 (control; n = 5), 2 (portal vein stenosis [PVS]; n = 5], 3 (thioacetamide [TAA]; n = 5), and 4 (PVS plus TAA; n = 15). After 4-months modeling period, liver and spleen CT perfusion, abdominal CT scans, portal hemodynamics, gastroscopy, hepatic function, blood routine, the bone marrow, liver, and spleen histology were studied. The animals in group 2 (PVS) developed extrahepatic portosystemic collateral circulation, particularly esophageal varices, without hepatic cirrhosis and portal hypertension. Animals from group 3 (TAA) presented mild cirrhosis and portal hypertension without significant symptoms of esophageal varices and hypersplenism. In contrast, animals from group 4 (PVS + TAA) showed well-developed micronodular and macronodular cirrhosis, associated with significant portal hypertension and hypersplenism. The combination of PVS and TAA represents a novel, reliable, and reproducible canine cirrhosis model of portal hypertension, which is associated with the typical characteristics of portal hypertension, including hypersplenism.  相似文献   

19.
20.
Accelerated intimal hyperplasia in response to altered flow environment is critical to the process of vein bypass graft failure. Lack of a reproducible animal model for dissecting the mechanisms of vein graft (VG) remodeling has limited progress toward solving this clinically significant problem. Combining a cuffed anastomotic technique with other surgical manipulations, we developed a well-defined, more robust method for studying hemodynamic factors in VG arterialization. VG with fistula placement, complete occlusion, or partial distal branch ligation (DBL) was performed in the carotid artery of 56 rabbits. Extensive hemodynamic and physiological analyses were performed to define the hemodynamic forces and histological adaptations of the wall at 1-28 days. Anastomotic time averaged 12 min, with 100% patency of bilateral grafts and unilateral grafts plus no adjunct or delayed fistula. Bilateral VG-DBL resulted in an immediate disparity in wall shear (0.8 +/- 0.1 vs. 12.4 +/- 1.1 dyn/cm2, ligated vs. contralateral graft). Grafts exposed to low shear stress responded primarily through enhanced intimal thickening (231 +/- 35 vs. 36 +/- 18 microm, low vs. high shear). High-shear-stress grafts adapted through enhanced outward remodeling, with a 24% increase in lumen diameter at 28 days (3.0 +/- 0.1 vs. 3.7 +/- 0.2 mm, low vs. high shear). We have taken advantage of the cuffed anastomotic technique and combined it with a bilateral VG-DBL model to dissect the impact of hemodynamic forces on VG arterialization. This novel model offers a robust, clinically relevant, statistically powerful small animal model for evaluation of high- and low-shear-regulated VG remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号