首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (ANG II) elicits a hypertrophic growth response characterized by an increase in protein synthesis without cell proliferation. The present study investigated the role of the nonreceptor tyrosine kinase PYK2 in the regulation of ANG II-induced signaling pathways that mediate VSMC growth. Using coimmunoprecipitation analysis, the role of PYK2 as an upstream regulator of both extracellular signal-related kinase (ERK) 1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase (PI 3-kinase) pathways was examined in cultured rat aortic VSMC. ANG II (100 nM) promoted the formation of a complex between PYK2 and the ERK1/2 regulators Shc and Grb2. ANG II caused a rapid and Ca(2+)-dependent tyrosine phosphorylation of the adapter molecule p130Cas, which coimmunoprecipitated both PYK2 and PI 3-kinase in ANG II-treated VSMC. Complex formation between PI 3-kinase and p130Cas and PYK2 was associated with a rapid phosphorylation of the ribosomal p70(S6) kinase in a Ca(2+)- and tyrosine kinase-dependent manner. These data suggest that PYK2 is an important regulator of multiple signaling pathways involved in ANG II-induced VSMC growth.  相似文献   

2.
The present study evaluated the effects of peroxisome proliferator-activated receptor (PPAR)-gamma activators on ANG II-induced signaling pathways and cell growth. Vascular smooth muscle cells (VSMC) derived from rat mesenteric arteries were treated with ANG II, with/without the AT1 receptor blocker valsartan or the AT2 receptor blocker PD-123319, after pretreatment for 24 h with the PPAR-gamma activators 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) or rosiglitazone. Both 15d-PGJ2 and rosiglitazone decreased ANG II-induced DNA synthesis. Rosiglitazone treatment increased nuclear PPAR-gamma expression and activity in VSMC. However, rosiglitazone did not alter expression of PPAR-alpha/beta, ERK 1/2, Akt, or ANG II receptors. 15d-PGJ2 and rosiglitazone decreased ERK 1/2 and Akt peak activity, both of which were induced by ANG II via the AT1 receptor. Rosiglitazone inhibited ANG II-enhanced phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), as well as Src homology (SH) 2-containing inositol phosphatase 2 (SHIP2). PPAR-gamma activation reduced ANG II-induced growth associated with inhibition of ERK 1/2, Akt, 4E-BP1, and SHIP2. Modulation of these pathways by PPAR-gamma activators may contribute to regression of vascular remodeling in hypertension.  相似文献   

3.
Normal pregnancy is associated with high angiotensin II (ANG II) concentrations in the maternal and fetal circulation. These high levels of ANG II may promote production vasodilators such as nitric oxide (NO). ANG II receptors are expressed in ovine fetoplacental artery endothelial (OFPAE) cells and mediate ANG II-stimulated OFPAE cell proliferation. Herein, we tested whether ANG II stimulated NO synthase 3 (NOS3, also known as eNOS) expression and total NO (NO(x)) production via activation of mitogen-activated protein kinase 3/1 (MAPK3/1, also known as ERK1/2) in OFPAE cells. ANG II elevated (P < 0.05) eNOS protein, but not mRNA levels with a maximum effect at 10 nM. ANG II also dose dependently increased (P < 0.05) NO(x) production with a maximal effect at doses of 1-100 nM. Activation of ERK1/2 by ANG II was determined by immunocytochemistry and Western blot analysis. ANG II rapidly induced positive staining for phosphorylated ERK1/2, appearing in cytosol after 1-5 min of ANG II treatment, accumulating in nuclei after 10 min, and disappearing at 15 min. ANG II increased (P < 0.05) phosphorylated ERK1/2 protein levels. Activation of ERK1/2 was confirmed by an immunocomplex kinase assay using ELK1 as a substrate. PD98059 significantly inhibited ANG II-induced ERK1/2 activation, and the ANG II-elevated eNOS protein levels but only partially reduced ANG II-increased NO(x) production. Thus, in OFPAE cells, the ANG II increased NO(x) production is associated with elevated eNOS protein expression, which is mediated at least in part via activation of the mitogen-activated protein kinase kinase1 and kinase2 (MAP2K1 and MAP2K2, known also as MEK1/2)/ERK1/2 cascade. Together with our previous observation that ANG II stimulates OFPAE cell proliferation, these data suggest that ANG II is a key regulator for both vasodilation and angiogenesis in the ovine fetoplacenta.  相似文献   

4.
ANG II stimulates phospholipase D (PLD) activity and growth of vascular smooth muscle cells (VSMC). The atypical protein kinase C-zeta (PKCzeta) plays a central role in the regulation of cell survival and proliferation. This study was conducted to determine the relationship between ANG II-induced activation of PKCzeta and PLD and their implication in VSMC adhesion, spreading, and hypertrophy. ANG II stimulated PKCzeta activity with maximal activation at 30 s followed by a decline in its activity to 45% above basal at 5 min. Inhibition of PKCzeta activity with a myristoylated pseudosubstrate peptide or overexpression of a kinase-inactive form of PKCzeta decreased ANG II-induced PLD activity. Moreover, depletion of PKCzeta with selective antisense oligonucleotides also decreased ANG II-induced PLD activity. Interaction between PLD2 and PKCzeta in VSMC was detected by coimmunoprecipitation. ANG II-induced PLD activity was inhibited by the primary alcohol n-butanol but not the tertiary alcohol t-butanol. The functional significance of PKCzeta and PLD2 in VSMC adhesion, spreading, and hypertrophy was investigated. Inhibition of PKCzeta and PLD2 activity or expression attenuated VSMC adhesion to collagen I and ANG II-induced cell spreading and hypertrophy. These results demonstrate that ANG II-induced PLD activation is regulated by PKCzeta and suggest a crucial role of PKCzeta-dependent PLD2 in VSMC functions such as adhesion, spreading, and hypertrophy, which are associated with the pathogenesis of atherosclerosis and malignant hypertension.  相似文献   

5.
This study determines that vascular smooth muscle cell (VSMC) signaling through extracellular signal-regulated kinase (ERK) 1/2-mitogen-activated protein (MAP) kinase, alphavbeta(3)-integrin, and transforming growth factor (TGF)-beta1 dictates collagen type I network induction in mesenteric resistance arteries (MRA) from type 1 diabetic (streptozotocin) or hypertensive (HT; ANG II) mice. Isolated MRA were subjected to a pressure-passive-diameter relationship. To delineate cell types and mechanisms, cultured VSMC were prepared from MRA and stimulated with ANG II (100 nM) and high glucose (HG, 22 mM). Pressure-passive-diameter relationship reduction was associated with increased collagen type I deposition in MRA from HT and diabetic mice compared with control. Treatment of HT and diabetic mice with neutralizing TGF-beta1 antibody reduced MRA stiffness and collagen type I deposition. Cultured VSMC stimulated with HG or ANG II for 5 min increased ERK1/2-MAP kinase phosphorylation, whereas a 48-h stimulation induced latent TGF-beta1, alphavbeta(3)-integrin, and collagen type 1 release in the conditioned media. TGF-beta1 bioactivity and Smad2 phosphorylation were alphavbeta(3)-integrin-dependent, since beta(3)-integrin antibody and alphavbeta(3)-integrin inhibitor (SB-223245, 10 microM) significantly prevented TGF-beta1 bioactivity and Smad2 phosphorylation. Pretreatment of VSMC with ERK1/2-MAP kinase inhibitor (U-0126, 1 microM) reduced alphavbeta(3)-integrin, TGF-beta1, and collagen type 1 content. Additionally, alphavbeta(3)-integrin antibody, SB-223245, TGF-beta1-small-intefering RNA (siRNA), and Smad2-siRNA (40 nM) prevented collagen type I network formation in response to ANG II and HG. Together, these data provide evidence that resistance artery fibrosis in type 1 diabetes and hypertension is a consequence of abnormal collagen type I release by VSMC and involves ERK1/2, alphavbeta(3)-integrin, and TGF-beta1 signaling. This pathway could be a potential target for overcoming small artery complications in diabetes and hypertension.  相似文献   

6.
7.
Catecholamines participate in the pathogenesis of portal hypertension and liver fibrosis through alpha1-adrenoceptors. However, the underlying cellular and molecular mechanisms are largely unknown. Here, we investigated the effects of norepinephrine (NE) on human hepatic stellate cells (HSC), which exert vasoactive, inflammatory, and fibrogenic actions in the injured liver. Adrenoceptor expression was assessed in human HSC by RT-PCR and immunocytochemistry. Intracellular Ca2+ concentration ([Ca2+]i) was studied in fura-2-loaded cells. Cell contraction was studied by assessing wrinkle formation and myosin light chain II (MLC II) phosphorylation. Cell proliferation and collagen-alpha1(I) expression were assessed by [3H]thymidine incorporation and quantitative PCR, respectively. NF-kappaB activation was assessed by luciferase reporter gene and p65 nuclear translocation. Chemokine secretion was assessed by ELISA. Normal human livers expressed alpha(1A)-adrenoceptors, which were markedly upregulated in livers with advanced fibrosis. Activated human HSC expressed alpha(1A)-adrenoceptors. NE induced multiple rapid [Ca2+]i oscillations (Ca2+ spikes). Prazosin (alpha1-blocker) completely prevented NE-induced Ca2+ spikes, whereas propranolol (nonspecific beta-blocker) partially attenuated this effect. NE caused phosphorylation of MLC II and cell contraction. In contrast, NE did not affect cell proliferation or collagen-alpha1(I) expression. Importantly, NE stimulated the secretion of inflammatory chemokines (RANTES and interleukin-8) in a dose-dependent manner. Prazosin blocked NE-induced chemokine secretion. NE stimulated NF-kappaB activation. BAY 11-7082, a specific NF-kappaB inhibitor, blocked NE-induced chemokine secretion. We conclude that NE stimulates NF-kappaB and induces cell contraction and proinflammatory effects in human HSC. Catecholamines may participate in the pathogenesis of portal hypertension and liver fibrosis by targeting HSC.  相似文献   

8.
9.
Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix proteins. Prolonged activation of CFs leads to cardiac fibrosis and reduced myocardial contractile function. Resveratrol (RES) exhibits a number of cardioprotective properties; however, the possibility that this compound affects CF function has not been considered. The current study tests whether RES directly influences the growth and proliferation of CFs and differentiation to the hypersecretory myofibroblast phenotype. Pretreatment of CFs with RES (5-25 microM) inhibited basal and ANG II-induced extracellular signal-regulated kinase (ERK) 1/2 and ERK kinase activation. This inhibition by RES reduced basal proliferation and blocked ANG II-induced growth and proliferation of CFs in a concentration-dependent manner, as measured by [(3)H]leucine and [(3)H]thymidine incorporation, respectively. RES pretreatment attenuated ERK phosphorylation when CFs were stimulated with 0.2 nM epidermal growth factor (EGF), a concentration at which EGF-induced ERK activation over basal was similar to the phosphorylation induced by 100 nM ANG II. Akt phosphorylation in CFs was unaffected by treatment with either 100 nM ANG II or 25 microM RES. Pretreatment of CFs with RES also reduced both ANG II- and transforming growth factor-beta-induced CF differentiation to the myofibroblast phenotype, indicated by a reduction in alpha-smooth muscle actin expression and stress fiber organization in CFs. This study identifies RES as an anti-fibrotic agent in the myocardium by limiting CF proliferation and differentiation, two critical steps in the pathogenesis of cardiac fibrosis.  相似文献   

10.
Lipocalin-type prostaglandin D2 synthase (L-PGDS) has recently been linked to a variety of pathophysiological cardiovascular conditions including hypertension and diabetes. In this study, we report on the 50% increase in L-PGDS protein expression observed in vascular smooth muscle cells (VSMC) isolated from spontaneously hypertensive rats (SHR). L-PGDS expression also increased 50% upon the differentiation of normotensive control cells (WKY, from Wistar-Kyoto rats). In addition, we demonstrate differential effects of L-PGDS treatment on cell proliferation and apoptosis in VSMCs isolated from SHR versus WKY controls. L-PGDS (50 microg/ml) was able to significantly inhibit VSMC proliferation and DNA synthesis and induce the apoptotic genes bax, bcl-x, and ei24 in SHR but had no effect on WKY cells. Hyperglycemic conditions also had opposite effects, in which increased glucose concentrations (20 mm) resulted in decreased L-PGDS expression in control cells but actually stimulated L-PGDS expression in SHR. Furthermore, we examined the effect of L-PGDS incubation on insulin-stimulated Akt, glycogen synthase kinase-3beta (GSK-3beta), and ERK phosphorylation. Unexpectedly, we found that when WKY cells were pretreated with L-PGDS, insulin could actually induce apoptosis and failed to stimulate Akt/GSK-3beta phosphorylation. Insulin-stimulated ERK phosphorylation was unaffected by L-PGDS pretreatment in both cell lines. We propose that L-PGDS is involved in the balance of VSMC proliferation and apoptosis and in the increased expression observed in the hypertensive state is an attempt to maintain a proper equilibrium between the two processes via the induction of apoptosis and inhibition of cell proliferation.  相似文献   

11.
Norepinephrine (NE) stimulates phospholipase D (PLD) through a Ras/MAPK pathway in rabbit vascular smooth muscle cells (VSMC). NE also activates calcium influx and calmodulin (CaM)-dependent protein kinase II-dependent cytosolic phospholipase A(2) (cPLA(2)). Arachidonic acid (AA) released by cPLA(2)-catalyzed phospholipid hydrolysis is then metabolized into hydroxyeicosatetraenoic acids (HETEs) through lipoxygenase and cytochrome P450 4A (CYP4A) pathways. HETEs, in turn, have been shown to stimulate Ras translocation and to increase MAPK activity in VSMC. This study was conducted to determine the contribution of cPLA(2)-derived AA and its metabolites (HETEs) to the activation of PLD. NE-induced PLD activation was reduced by two structurally distinct CaM antagonists, W-7 and calmidazolium, and by CaM-dependent protein kinase II inhibition. Blockade of cPLA(2) activity or protein depletion with selective cPLA(2) antisense oligonucleotides abolished NE-induced PLD activation. The increase in PLD activity elicited by NE was also blocked by inhibitors of lipoxygenases (baicalein) and CYP4A (17-octadecynoic acid), but not of cyclooxygenase (indomethacin). AA and its metabolites (12(S)-, 15(S)-, and 20-HETEs) increased PLD activity. PLD activation by AA and HETEs was reduced by inhibitors of Ras farnesyltransferase (farnesyl protein transferase III and BMS-191563) and MEK (U0126 and PD98059). These data suggest that HETEs are the mediators of cPLA(2)-dependent PLD activation by NE in VSMC. In addition to cPLA(2), PLD was also found to contribute to AA release for prostacyclin production via the phosphatidate phosphohydrolase/diacylglycerol lipase pathway. Finally, a catalytically inactive PLD(2) (but not PLD(1)) mutant inhibited NE-induced PLD activity, and PLD(2) was tyrosine-phosphorylated in response to NE by a MAPK-dependent pathway. We conclude that NE stimulates cPLA(2)-dependent PLD(2) through lipoxygenase- and CYP4A-derived HETEs via the Ras/ERK pathway by a mechanism involving tyrosine phosphorylation of PLD(2) in rabbit VSMC.  相似文献   

12.
Lead (Pb(2+)) has been implicated in the development of hypertension and atherosclerosis. The proliferation of vascular smooth muscle cells (VSMC) is a central feature of both conditions and there is evidence that Pb(2+) potentiates serum-dependent cell growth. The aim of this work was to examine the role of phospholipase A(2) in mitogen-dependent VSMC proliferation and determine if Pb(2+) interacts with this system in order to potentiate mitotic events. It was observed that cell proliferation induced by angiotensin II, or fetal bovine serum, required the activation of a Ca(2+)-dependent cytosolic phospholipase A(2) and the subsequent release of unesterified arachidonic acid. This path was affected by Pb(2+) as the metal increased the amount of arachidonic acid accumulation induced by either mitogen. In addition, Pb(2+) potentiated mitogen-induced DNA synthesis when present at lower doses (0.02 or 0.2 mg%), but had no effect on DNA synthesis, or cell numbers, in unstimulated cells. However, a high dose (2 mg%) of Pb(2+) attenuated the DNA synthesis stimulated by angiotensin II, or serum, but induced the accumulation of unesterified arachidonic acid in unstimulated cells. A biphasic effect of Pb(2+) on cell numbers and viability was also observed as 0.02 or 0.2 mg% Pb(2+) did not affect cell numbers or trypan blue exclusion in unstimulated cells, while 2 mg% Pb(2+) reduced cell numbers and viability. It appeared, therefore, that the lower concentrations of Pb(2+) increased arachidonic acid release and DNA synthesis only in stimulated VSMC, perhaps due to further activation of a Ca(2+)-dependent processes. In contrast, the high dose of Pb(2+) reduced DNA synthesis in stimulated cells and reduced cell numbers and viability in unstimulated cells, which may relate to the noted increase in unesterified arachidonic acid.  相似文献   

13.
PKC, a major target for the tumor-promoting phorbol esters, has been implicated in the signal transduction pathways that mediate important functions in intestinal epithelial cells, including proliferation and carcinogenesis. With the use of IEC-18 cells arrested in G0/G1, addition of phorbol esters resulted in a modest increase in [3H]thymidine incorporation and a slight shift toward the S and G2/M phases of the cell cycle, whereas the combination of EGF and phorbol 12,13-dibutyrate (PDB) synergistically stimulated DNA synthesis. To investigate the effects of receptor-mediated PKC activation on mitogenesis, we demonstrated that ANG II induced ERK activation, a response completely blocked by pretreatment with mitogen/extracellular signal-regulated kinase inhibitors or specific PKC inhibitors. Furthermore, ANG II stimulated an over threefold increase in [3H]thymidine incorporation that was corroborated by flow cytometric analysis of the cell cycle to levels comparable to that achieved by the combination of EGF and PDB. Taken together, our results indicate that receptor-mediated PKC activation, as induced by ANG II, transduces mitogenic signals leading to DNA synthesis and cell proliferation in IEC-18 cells.  相似文献   

14.
High-affinity binding of angiotensin II (ANG II) to the ANG II type 1 receptor (AT1R) results in the activation of ERK1/2 mitogen-activated protein kinases (MAPK). However, the precise mechanism of ANG II-induced ERK1/2 activation has not been fully characterized. Here, we investigated the signaling events leading to ANG II-induced ERK1/2 activation using a c-Src/Yes/Fyn tyrosine kinase-deficient mouse embryonic fibroblast (MEF) cell line stably transfected with the AT1R (SYF/AT1). ERK1/2 activation was reduced by 50% within these cells compared with wild-type controls (WT/AT1). The remaining 50% of intracellular ERK1/2 activation was dependent upon heterotrimeric G protein and protein kinase C zeta (PKC) activation. Therefore, ANG II-induced ERK1/2 activation occurs via two independent mechanisms. We next investigated whether a loss of either c-Src/Yes/Fyn or PKC signaling affected ERK1/2 nuclear translocation and cell proliferation in response to ANG II. ANG II-induced cell proliferation was markedly reduced in SYF/AT1 cells compared with WT/AT1 cells (P < 0.01), but interestingly, ERK2 nuclear translocation was normal. ANG II-induced nuclear translocation of ERK2 was blocked via pretreatment of WT/AT1 cells with a PKC pseudosubstrate. ANG II-induced cell proliferation was significantly reduced in PKC pseudosubstrate-treated WT/AT1 cells (P < 0.01) and was completely blocked in SYF/AT1 cells treated with this same compound. Thus ANG II-induced cell proliferation appears to be regulated by both ERK1/2-driven nuclear and cytoplasmic events. In response to ANG II, the ability of ERK1/2 to remain within the cytoplasm or translocate into the nucleus is controlled by c-Src/Yes/Fyn or heterotrimeric G protein/PKC signaling, respectively. Src family tyrosine kinases; angiotensin II  相似文献   

15.
We studied the effects of ANG II on extracellular signal-regulated kinase (ERK)1/2 phosphorylation in rat pituitary cells. ANG II increased ERK phosphorylation in a time- and concentration-dependent way. Maximum effect was obtained at 5 min at a concentration of 10-100 nM. The effect of 100 nM ANG II was blocked by the AT1 antagonist DUP-753, by the phospholipase C (PLC) inhibitor U-73122, and by the MAPK kinase (MEK) antagonist PD-98059. The ANG II-induced increase in phosphorylated (p)ERK was insensitive to pertussis toxin blockade and PKC depletion or inhibition. The effect was also abrogated by chelating intracellular calcium with BAPTA-AM or TMB-8 by depleting intracellular calcium stores with a 30-min pretreatment with EGTA and by pretreatment with herbimycin A and PP1, two c-Src tyrosine kinase inhibitors. It was attenuated by AG-1478, an inhibitor of epidermal growth factor receptor (EGFR) activation. Therefore, in the rat pituitary, the increase of pERK is a Gq- and PLC-dependent process, which involves an increase in intracellular calcium and activation of a c-Src tyrosine kinase, transactivation of the EGFR, and the activation of MEK. Finally, the response of ERK activation by ANG II is altered in hyperplastic pituitary cells, in which calcium mobilization evoked by ANG II is also modified.  相似文献   

16.
The kallikrein-kinin and renin-angiotensin systems interact at multiple levels. In the present study, we tested the hypothesis that the B1 kinin receptor (B1R) contributes to vascular hypertrophy in angiotensin II (ANG II)–induced hypertension, through a mechanism involving reactive oxygen species (ROS) generation and extracellular signal-regulated kinase (ERK1/2) activation. Male Wistar rats were infused with vehicle (control rats), 400 ng/Kg/min ANG II (ANG II rats) or 400 ng/Kg/min ANG II plus B1 receptor antagonist, 350 ng/Kg/min des-Arg9-Leu8-bradykinin (ANGII+DAL rats), via osmotic mini-pumps (14 days) or received ANG II plus losartan (10 mg/Kg, 14 days, gavage - ANG II+LOS rats). After 14 days, ANG II rats exhibited increased systolic arterial pressure [(mmHg) 184±5.9 vs 115±2.3], aortic hypertrophy; increased ROS generation [2-hydroxyethidium/dihydroethidium (EOH/DHE): 21.8±2.7 vs 6.0±1.8] and ERK1/2 phosphorylation (% of control: 218.3±29.4 vs 100±0.25]. B1R expression was increased in aortas from ANG II and ANG II+DAL rats than in aortas from the ANG II+LOS and control groups. B1R antagonism reduced aorta hypertrophy, prevented ROS generation (EOH/DHE: 9.17±3.1) and ERK1/2 phosphorylation (137±20.7%) in ANG II rats. Cultured aortic vascular smooth muscle cells (VSMC) stimulated with low concentrations (0.1 nM) of ANG II plus B1R agonist exhibited increased ROS generation, ERK1/2 phosphorylation, proliferating-cell nuclear antigen expression and [H3]leucine incorporation. At this concentration, neither ANG II nor the B1R agonist produced any effects when tested individually. The ANG II/B1R agonist synergism was inhibited by losartan (AT1 blocker, 10 µM), B1R antagonist (10 µM) and Tiron (superoxide anion scavenger, 10 mM). These data suggest that B1R activation contributes to ANG II-induced aortic hypertrophy. This is associated with activation of redox-regulated ERK1/2 pathway that controls aortic smooth muscle cells growth. Our findings highlight an important cross-talk between the DABK and ANG II in the vascular system and contribute to a better understanding of the mechanisms involved in vascular remodeling in hypertension.  相似文献   

17.
Interleukin-6 (IL-6) subfamily of cytokines, including oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-6, has been implicated in a variety of physiological responses, such as cell growth, differentiation, and inflammation. In the present study, we demonstrated that both OSM and LIF stimulated the proliferation of human adipose tissue-derived mesenchymal stem cells (hATSCs), however, IL-6 had no effect on cell proliferation. OSM treatment induced phosphorylation of ERK, and pretreatment with U0126, a MEK inhibitor, prevented the OSM-stimulated proliferation of hATSCs, suggesting that the MEK/ERK pathway is involved in the OSM-induced proliferation. Treatment with OSM also induced phosphorylation of JAK2 and JAK3, and pretreatment of the cells with WHI-P131, a JAK3 inhibitor, but not with AG490, a JAK2 inhibitor, attenuated the OSM-induced proliferation of hATSCs. Furthermore, OSM treatment elicited phosphorylation of STAT1 and STAT3, and pretreatment with WHI-P131 specifically prevented the OSM-induced phosphorylation of STAT1, without affecting the OSM-induced phosphorylation of ERK and STAT3. These results suggest that two separate signaling pathways, such as MEK/ERK and JAK3/STAT1, are independently involved in the OSM-stimulated proliferation of hATSCs.  相似文献   

18.
Angiotensin II (Ang II) regulates vascular smooth muscle cell (VSMC) function by activating signaling cascades that promote vasoconstriction, growth, and inflammation. Subcellular mechanisms coordinating these processes are unclear. In the present study, we questioned the role of the actin cytoskeleton in Ang II mediated signaling through mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS) in VSMCs. Human VSMCs were studied. Cells were exposed to Ang II (10-7 mol/L) in the absence and presence of cytochalasin B (10-6 mol/L, 60 min), which disrupts the actin cytoskeleton. Phosphorylation of p38MAP kinase, JNK, and ERK1/2 was assessed by immuno blotting. ROS generation was measured using the fluoroprobe chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (4 micromol/L). Interaction between the cytoskeleton and NADPH oxidase was determined by evaluating the presence of p47phox in the Triton X-100 insoluble membrane fraction. Ang II significantly increased phosphorylation of p38MAP kinase, JNK, and ERK1/2 (two- to threefold above control, p < 0.05). Cytochalasin B pretreatment attenuated p38MAP kinase and JNK effects (p < 0.05) without altering ERK1/2 phosphorylation. ROS formation, which was increased in Ang II stimulated cells, was significantly reduced by cytochalasin B (p < 0.01). p47phox, critically involved in NADPH oxidase activation, colocalized with the actin cytoskeleton in Ang II stimulated cells. Our data demonstrate that Ang II mediated ROS formation and activation of p38MAP kinase and JNK, but not ERK1/2, involves the actin cytoskeleton in VSMCs. In addition, Ang II promotes interaction between actin and p47phox. These data indicate that the cytoskeleton is involved in differential MAP kinase signaling and ROS generation by Ang II in VSMCs. Together, these studies suggest that the cytoskeleton may be a central point of crosstalk in growth- and redox-signaling pathways by Ang II, which may be important in the regulation of VSMC function.  相似文献   

19.
《Life sciences》1995,56(20):PL383-PL388
To examine the role of the renin-angiotensin system on human vascular smooth muscle cell (VSMC) replication, we studied the effect of DUP753, an angiotensin II (ANG II) type 1 receptor antagonist, on ANG II stimulated tritiated-thymidine (3H-Tdr) incorporation into cultured human aortic VSMC. ANG II stimulated DNA synthesis of VSMC in a dose-dependent manner as estimated by 3H-Tdr incorporation (control; 2993 ± 486 cpm, 10−8M; 3360 ± 350 cpm, 10−7M; 3474 ± 516 cpm, 10−6M; 4889 ± 320 cpm, P < 0. 01). The effects of ANG II were clearly inhibited by 10−6M DUP 753 (ANG II 10−8M; 3360 ± 350 vs 509 ± 39 cpm, 10−7M; 3474 ± 516 vs 661 ± 36 cpm, 10−6M; 4889 ± 320 vs 806 ± 76 cpm, each P < 0. 01). This receptor antagonist decreased the basal 3H-Tdr incorporation of VSMC from 2933 ± 486 to 411 ±78 cpm (P < 0. 01). Furthermore, DUP 753 decreased 10−7M ANG II-stimulated 3H-Tdr incorporation of VSMC in a dose-dependent manner (control; 2627 ± 256 cpm, 10−9M; 2145 ± 143 cpm, 10−8M; 1047 ± 543 cpm, 10−7M; 639 ± 169 cpm, 10−6M; 642 ± 59 cpm, P < 0. 01). These observations suggest that, in human VSMC, ANG II type 1 receptors are important for the regulation of both stimulated and basal cell proliferation. It may therefore be worth while to examine the clinical usefulness of DUP 753 for preventing abnormal VSMC growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号