首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RESID Database is a comprehensive collection of annotations and structures for protein pre-, co- and post-translational modifications including amino-terminal, carboxyl-terminal and peptide chain cross-link modifications. The RESID Database includes: systematic and alternate names, atomic formulas and masses, enzyme activities generating the modifications, keywords, literature citations, Gene Ontology cross-references, Protein Information Resource (PIR) and SWISS-PROT protein sequence database feature table annotations, structure diagrams and molecular models. This database is freely accessible on the Internet through the European Bioinformatics Institute at http://srs.ebi.ac.uk/srs6bin/cgi-bin/wgetz?-page+LibInfo+-lib+RESID, through the National Cancer Institute - Frederick Advanced Biomedical Computing Center at http://www.ncifcrf.gov/RESID, or through the Protein Information Resource at http://pir.georgetown.edu/pirwww/dbinfo/resid.html.  相似文献   

2.
The RESID Database contains supplemental information on post-translational modifications for the standardized annotations appearing in the PIR-International Protein Sequence Database. The RESID Database includes: systematic and frequently observed alternate names, Chemical s Service registry numbers, atomic formulas and weights, enzyme activities, indicators for N-terminal, C-terminal or peptide chain cross-link modifications, keywords, literature citations with database cross-references, structural diagrams and molecular models. Since 1995 updates of the RESID Database have appeared as often as weekly, and full releases appear quarterly. The database is freely accessible through the PIR Web site http://pir.georgetown.edu/pirwww/dbinfo/resid.html and by FTP.  相似文献   

3.
Because the number of post-translational modifications requiring standardized annotation in the PIR-International Protein Sequence Database was large and steadily increasing, a database of protein structure modifications was constructed in 1993 to assist in producing appropriate feature annotations for covalent binding sites, modified sites and cross-links. In 1995 RESID was publicly released as a PIR-International text database distributed on CD-ROM and accessible through the ATLAS program. In 1998 it was made available on the PIR Web site at http://www-nbrf.georgetown.edu/pir/searchdb++ +.html . The RESID Database includes such information as: systematic and frequently observed alternate names; Chemical s Service registry numbers; atomic formulas and weights; enzyme activities; indicators forN-terminal, C-terminal or peptide chain cross-link modifications; keywords; and literature citations with database cross-references. The RESID Database can be used to predict atomic masses for peptides, and is being enhanced to provide molecular structures for graphical presentation on the PIR Web site using widely available molecular viewing programs.  相似文献   

4.
5.
BioThesaurus is a web-based system designed to map a comprehensive collection of protein and gene names to protein entries in the UniProt Knowledgebase. Currently covering more than two million proteins, BioThesaurus consists of over 2.8 million names extracted from multiple molecular biological databases according to the database cross-references in iProClass. The BioThesaurus web site allows the retrieval of synonymous names of given protein entries and the identification of protein entries sharing the same names. AVAILABILITY: BioThesaurus is accessible for online searching at http://pir.georgetown.edu/iprolink/biothesaurus  相似文献   

6.
The Protein Information Resource, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the most comprehensive and expertly annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database. To provide timely and high quality annotation and promote database interoperability, the PIR-International employs rule-based and classification-driven procedures based on controlled vocabulary and standard nomenclature and includes status tags to distinguish experimentally determined from predicted protein features. The database contains about 200,000 non-redundant protein sequences, which are classified into families and superfamilies and their domains and motifs identified. Entries are extensively cross-referenced to other sequence, classification, genome, structure and activity databases. The PIR web site features search engines that use sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. The PIR-Inter-national databases and search tools are accessible on the PIR web site at http://pir.georgetown.edu/ and at the MIPS web site at http://www.mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP.  相似文献   

7.
The protein information resource (PIR)   总被引:13,自引:0,他引:13       下载免费PDF全文
The Protein Information Resource (PIR) produces the largest, most comprehensive, annotated protein sequence database in the public domain, the PIR-International Protein Sequence Database, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Sequence Database (JIPID). The expanded PIR WWW site allows sequence similarity and text searching of the Protein Sequence Database and auxiliary databases. Several new web-based search engines combine searches of sequence similarity and database annotation to facilitate the analysis and functional identification of proteins. New capabilities for searching the PIR sequence databases include annotation-sorted search, domain search, combined global and domain search, and interactive text searches. The PIR-International databases and search tools are accessible on the PIR WWW site at http://pir.georgetown.edu and at the MIPS WWW site at http://www. mips.biochem.mpg.de. The PIR-International Protein Sequence Database and other files are also available by FTP.  相似文献   

8.
PIR: a new resource for bioinformatics   总被引:3,自引:0,他引:3  
SUMMARY: The Protein Information Resource (PIR) has greatly expanded its Web site and developed a set of interactive search and analysis tools to facilitate the analysis, annotation, and functional identification of proteins. New search engines have been implemented to combine sequence similarity search results with database annotation information. The new PIR search systems have proved very useful in providing enriched functional annotation of protein sequences, determining protein superfamily-domain relationships, and detecting annotation errors in genomic database archives. AVAILABILITY: http://pir.georgetown.edu/. CONTACT: mcgarvey@nbrf.georgetown.edu  相似文献   

9.
The Protein Information Resource (PIR) is an integrated public resource of protein informatics that supports genomic and proteomic research and scientific discovery. PIR maintains the Protein Sequence Database (PSD), an annotated protein database containing over 283 000 sequences covering the entire taxonomic range. Family classification is used for sensitive identification, consistent annotation, and detection of annotation errors. The superfamily curation defines signature domain architecture and categorizes memberships to improve automated classification. To increase the amount of experimental annotation, the PIR has developed a bibliography system for literature searching, mapping, and user submission, and has conducted retrospective attribution of citations for experimental features. PIR also maintains NREF, a non-redundant reference database, and iProClass, an integrated database of protein family, function, and structure information. PIR-NREF provides a timely and comprehensive collection of protein sequences, currently consisting of more than 1 000 000 entries from PIR-PSD, SWISS-PROT, TrEMBL, RefSeq, GenPept, and PDB. The PIR web site (http://pir.georgetown.edu) connects data analysis tools to underlying databases for information retrieval and knowledge discovery, with functionalities for interactive queries, combinations of sequence and text searches, and sorting and visual exploration of search results. The FTP site provides free download for PSD and NREF biweekly releases and auxiliary databases and files.  相似文献   

10.
The Biodegradative Strain Database (BSD) is a freely-accessible, web-based database providing detailed information on degradative bacteria and the hazardous substances that they degrade, including corresponding literature citations, relevant patents and links to additional web-based biological and chemical data. The BSD (http://bsd.cme.msu.edu) is being developed within the phylogenetic framework of the Ribosomal Database Project II (RDPII: http://rdp.cme.msu.edu/html) to provide a biological complement to the chemical and degradative pathway data of the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD: http://umbbd.ahc.umn.edu). Data is accessible through a series of strain, chemical and reference lists or by keyword search. The web site also includes on-line data submission and user survey forms to solicit user contributions and suggestions. The current release contains information on over 250 degradative bacterial strains and 150 hazardous substances. The transformation of xenobiotics and other environmentally toxic compounds by microorganisms is central to strategies for biocatalysis and the bioremediation of contaminated environments. However, practical, comprehensive, strain-level information on biocatalytic/biodegradative microbes is not readily available and is often difficult to compile. Similarly, for any given environmental contaminant, there is no single resource that can provide comparative information on the array of identified microbes capable of degrading the chemical. A web site that consolidates and cross-references strain, chemical and reference data related to biocatalysis, biotransformation, biodegradation and bioremediation would be an invaluable tool for academic and industrial researchers and environmental engineers.  相似文献   

11.
The UAB Proteomics Database   总被引:3,自引:0,他引:3  
SUMMARY: The University of Alabama at Birmingham (UAB) Proteomics Database (UPD) (http://www.uab.edu/proteinmenu) was created to provide a repository for the storage and linkage of two-dimensional (2D) gel images and the associated information obtained through mass spectrometry analysis of the proteins excised from the 2D gels in a manner similar to the SWISS-2DPAGE database and the Stanford Microarray Database. This was accomplished through the development of a web interface, a relational database, image maps and hyperlinks stored in the database. In addition to the internally generated data, UPD provides links to the National Center for Biotechnology Information via accession number hyperlinks. UPD currently contains information on 44 individual proteins derived from four experiments conducted by four UAB faculty members. Images of the gels from which each of these proteins was isolated are accessed by hyperlinks embedded in the database. AVAILABILITY: The UAB Proteomics Database can be accessed at http://www.uab.edu/proteinmenu.  相似文献   

12.
MOTIVATION: The Protein Information Resource (PIR) maintains a database of annotated and curated alignments in order to visually represent interrelationships among sequences in the PIR-International Protein Sequence Database, to spread and standardize protein names, features and keywords among members of a family or superfamily, and to aid us in classifying sequences, in identifying conserved regions, and in defining new homology domains. RESULTS: Release 22.0, (December 1998), of the PIR-ALN database contains a total of 3806 alignments, including 1303 superfamily, 2131 family and 372 homology domain alignments. This is an appropriate dataset to develop and extract patterns, test profiles, train neural networks or build Hidden Markov Models (HMMs). These alignments can be used to standardize and spread annotation to newer members by homology, as well as to understand the modular architecture of multidomain proteins. PIR-ALN includes 529 alignments that can be used to develop patterns not represented in PROSITE, Blocks, PRINTS and Pfam databases. The ATLAS information retrieval system can be used to browse and query the PIR-ALN alignments. AVAILABILITY: PIR-ALN is currently being distributed as a single ASCII text file along with the title, member, species, superfamily and keyword indexes. The quarterly and weekly updates can be accessed via the WWW at pir.georgetown.edu. The quarterly updates can also be obtained by anonymous FTP from the PIR FTP site at NBRF.Georgetown.edu, directory [ANONYMOUS.PIR.ALIGNMENT].  相似文献   

13.
Phytophthora ramorum is an oomycete plant pathogen classified in the kingdom Stramenopila. P. ramorum is the causal agent of sudden oak death on coast live oak and tanoak as well as ramorum blight on woody ornamental and forest understorey plants. It causes stem cankers on trees, and leaf blight or stem dieback on ornamentals and understorey forest species. This pathogen is managed in the USA and Europe by eradication where feasible, by containment elsewhere and by quarantine in many parts of the world. Genomic resources provide information on genes of interest to disease management and have improved tremendously since sequencing the genome in 2004. This review provides a current overview of the pathogenicity, population genetics, evolution and genomics of P. ramorum. Taxonomy: Phytophthora ramorum (Werres, De Cock & Man in't Veld): kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. Host range: The host range is very large and the list of known hosts continues to expand at the time of writing. Coast live oak and tanoak are ecologically, economically and culturally important forest hosts in the USA. Rhododendron, Viburnum, Pieris, Syringa and Camellia are key ornamental hosts on which P. ramorum has been found repeatedly, some of which have been involved in moving the pathogen via nursery shipments. Disease symptoms: P. ramorum causes two different diseases with differing symptoms: sudden oak death (bleeding lesions, stem cankers) on oaks and ramorum blight (twig dieback and/or foliar lesions) on tree and woody ornamental hosts. Useful websites: http://nature.berkeley.edu/comtf/ , http://rapra.csl.gov.uk/ , http://www.aphis.usda.gov/plant_health/plant_pest_info/pram/index.shtml , http://genome.jgi‐psf.org/Phyra1_1/Phyra1_1.home.html , http://pamgo.vbi.vt.edu/ , http://pmgn.vbi.vt.edu/ , http://vmd.vbi.vt.edu./ , http://web.science.oregonstate.edu/bpp/labs/grunwald/resources.htm , http://www.defra.gov.uk/planth/pramorum.htm , http://www.invasive.org/browse/subject.cfm?sub=4603 , http://www.forestry.gov.uk/forestry/WCAS‐4Z5JLL  相似文献   

14.
15.
This paper describes a database for cell signaling enzymes. Our web database offers methods to study, interpret and compare cell-signaling enzymes. Searching and retrieving data from this database has been made easy and user friendly and it is well integrated with other related databases. We believe the end user will be benefited from this database. AVAILABILITY: http://www.sastra.edu/dcse/index.html.  相似文献   

16.
SUMMARY: GOLD (Genomes On Line Database) is a World Wide Web resource for comprehensive access to information regarding complete and ongoing genome projects around the world. AVAILABILITY: GOLD is based at the University of Illinois at Urbana-Champaign and is available at http://geta.life.uiuc.edu/ approximately nikos/genomes. html. It is also mirrored at the European Bioinformatics Institute at http://www.ebi.ac.uk/research/cgg/genomes.html. CONTACT: genomes@ebi.ac.uk  相似文献   

17.
ExInt: an Exon Intron Database   总被引:5,自引:0,他引:5       下载免费PDF全文
The Exon/Intron Database (ExInt) stores information of all GenBank eukaryotic entries containing an annotated intron sequence. Data are available through a retrieval system, as flat-files and as a MySQL dump file. In this report we discuss several implementations added to ExInt, which is accessible at http://intron.bic.nus.edu.sg/exint/newexint/exint.html.  相似文献   

18.
MOTIVATION: Using bioinformatic approaches we aimed to characterize poorly understood abnormalities in splicing known as exon scrambling, exon repetition and trans-splicing. RESULTS: We developed a software package that allows large-scale comparison of all human expressed sequence tags (EST) sequences to the entire set of human gene sequences. Among 5,992,495 EST sequences, 401 cases of exon repetition and 416 cases of exon scrambling were found. The vast majority of identified ESTs contain fragments rather than full-length repeated or scrambled exons. Their structures suggest that the scrambled or repeated exon fragments may have arisen in the process of cDNA cloning and not from splicing abnormalities. Nevertheless, we found 11 cases of full-length exon repetition showing that this phenomenon is real yet very rare. In searching for examples of trans-splicing, we looked only at reproducible events where at least two independent ESTs represent the same putative trans-splicing event. We found 15 ESTs representing five types of putative trans-splicing. However, all 15 cases were derived from human malignant tissues and could have resulted from genomic rearrangements. Our results provide support for a very rare but physiological occurrence of exon repetition, but suggest that apparent exon scrambling and trans-splicing result, respectively, from in vitro artifact and gene-level abnormalities. AVAILABILITY: Exon-Intron Database (EID) is available at http://www.meduohio.edu/bioinfo/eid. Programs are available at http://www.meduohio.edu/bioinfo/software.html. The Laboratory website is available at http://www.meduohio.edu/medicine/fedorov Supplementary information: Supplementary file is available at http://www.meduohio.edu/bioinfo/software.html.  相似文献   

19.
The Yeast Protein Database (YPD) is a curated database for the proteome of Saccharomyces cerevisiae . It consists of approximately 6000 Yeast Protein Reports, one for each of the known or predicted yeast proteins. Each Yeast Protein Report is a one-page presentation of protein properties, annotation lines that summarize findings from the literature, and references. In the past year, the number of annotation lines has grown from 25 000 to approximately 35 000, and the number of articles curated has grown from approximately 3500 to >5000. Recently, new data types have been included in YPD: protein-protein interactions, genetic interactions, and regulators of gene expression. Finally, a new layer of information, the YPD Protein Minireviews, has recently been introduced. The Yeast Protein Database can be found on the Web at http://www.proteome.com/YPDhome. html  相似文献   

20.
The iProClass database is an integrated resource that provides comprehensive family relationships and structural and functional features of proteins, with rich links to various databases. It is extended from ProClass, a protein family database that integrates PIR superfamilies and PROSITE motifs. The iProClass currently consists of more than 200,000 non-redundant PIR and SWISS-PROT proteins organized with more than 28,000 superfamilies, 2600 domains, 1300 motifs, 280 post-translational modification sites and links to more than 30 databases of protein families, structures, functions, genes, genomes, literature and taxonomy. Protein and family summary reports provide rich annotations, including membership information with length, taxonomy and keyword statistics, full family relationships, comprehensive enzyme and PDB cross-references and graphical feature display. The database facilitates classification-driven annotation for protein sequence databases and complete genomes, and supports structural and functional genomic research. The iProClass is implemented in Oracle 8i object-relational system and available for sequence search and report retrieval at http://pir.georgetown.edu/iproclass/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号