首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Secretin is a 27 amino acid peptide which stimulates the secretion of bicarbonate, enzymes and potassium ion from the pancreas. A complementary DNA encoding the rat secretin receptor was isolated from a CDM8 expression library of NG108-15 cell line. The secretin receptor expressed in COS cells could specifically bind the iodinated secretin with high and low affinities. Co-expression of the secretin receptor with the alpha-subunit of rat Gs protein increased the concentration of the high affinity receptor in the membrane fraction of the transfected COS cells. Secretin could stimulate accumulation of cAMP in COS cells expressing the cloned secretin receptor. The nucleotide sequence analysis of the cDNA has revealed that the secretin receptor consists of 449 amino acids with a calculated Mr of 48,696. The secretin receptor contains seven putative transmembrane segments, and belongs to a family of the G protein-coupled receptor. However, the amino acid sequence of the secretin receptor has no significant similarity with that of other G protein-coupled receptors. A 2.5 kb mRNA coding for the secretin receptor could be detected in NG108-15 cells, and rat heart, stomach and pancreatic tissue.  相似文献   

3.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

4.
Previous studies have indicated that plasma levels of peptide YY (PYY) increase significantly after a meal. The purpose of this study was to characterize the interaction of PYY and secretin in the inhibition of gastric acid secretion, and to determine whether PYY can influence acid-induced inhibition of gastric acid secretion in conscious dogs. I.v. administration of PYY at 200 pmol/kg/h inhibited pentagastrin (1 microgram/kg/h)-stimulated gastric acid output (P less than 0.05). PYY further augmented i.v. secretin-induced inhibition of pentagastrin-stimulated gastric acid output by 32 +/- 7%, and intraduodenal hydrochloric acid-induced inhibition of pentagastrin-stimulated gastric acid output by 40 +/- 12%. The mean integrated release of secretin response to duodenal acidification (3.9 +/- 1.0 ng-[0-60] min/ml) was not affected by PYY (3.3 +/- 0.9 ng-[0-60] min/ml). The present study demonstrates that PYY can interact with secretin and duodenal acidification in an additive fashion to inhibit pentagastrin-stimulated gastric acid secretion. Our results suggest that several hormones that are released postprandially can interact with each other to inhibit gastric acid secretion.  相似文献   

5.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

6.
The effect of secretin on acid and pepsin secretion and gastrin release in the totally isolated vascularly perfused rat stomach was studied. With the phosphodiesterase inhibitor isobutyl methylxanthine (IMX) added to the vascular perfusate, baseline acid secretion was 4.7 +/- 1.1 (mean +/- S.E.M.) mumol/h and baseline pepsin output 1147 +/- 223 micrograms/h. Secretin significantly inhibited acid output to a minimum of 1.4 +/- 0.2 mumol/h at a concentration of 25 pM in the vascular perfusate (P less than 0.01). Pepsin output was not significantly different from baseline at any of the secretin doses tested. Threshold secretin concentration for acid inhibition was 5 pM. IMX stimulated gastrin output from 48 +/- 9 pM in the basal state to 95 +/- 13 pM after IMX (P less than 0.01). Secretin inhibited gastrin release only at the maximal dose of 625 pM, when gastrin concentration in the venous effluent decreased from 93 +/- 19 to 68 +/- 19 pM after secretin. Thus, in the totally isolated vascularly perfused rat stomach secretin in physiological concentrations inhibits acid secretion by a direct action on the acid secretory process and not via gastrin inhibition. The study also suggests that gastrin release at least in part is mediated via increased intracellular cAMP.  相似文献   

7.
8.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   

9.
《Peptides》1998,19(6):1055-1062
The rabbit secretin receptor cDNA was cloned from rabbit pancreas using combined polymerase chain reaction (PCR)/rapid amplification of cDNA ends (PCR/RACE) approaches. The rabbit cDNA encoded 445 amino acids and had 80 and 85% homology with rat- and human receptor, respectively, in terms of nucleic and amino acid sequences. Several regions where the rabbit receptor sequence diverged from the rat/human receptor sequences were observed in the putative extracellular domains of the receptor. A cDNA coding for a similar sequence with a 76 bp deletion after the 5th transmembrane domain was also found; it probably encoded an inactive protein. The whole rabbit secretin receptor cDNA was subcloned in expression vector pCR3.1, then stably and transiently transfected in Chinese hamster ovary (CHO) cells. The pharmacological properties of the rat and rabbit secretin receptor studies were compared by radiolabeled secretin binding, binding inhibition, and adenylate cyclase activation (using secretin analogs and fragments). Porcine secretin was equipotent with rabbit secretin on the rabbit secretin receptor, but fivefold more potent than rabbit secretin on the rat receptor. This was due to the serine → arginine residue replacement, in position 16 of rabbit secretin. Amino terminal modified secretin analogs (secretin(2–27), [E3]secretin, [N3]secretin) and VIP were less potent than secretin on both secretin receptors, but more potent on the rabbit than on the rat receptor. The carboxy-terminally truncated fragment (1–26) had the same reduced potency on rat and rabbit receptors. Thus, the rabbit secretin receptor had original properties, different from those of the rat receptor.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP), existing in two variants, PACAP-27 and PACAP-38, is found in the enteric nervous system and regulates function of the digestive system. However, the regulatory mechanism of PACAP on gastric acid secretion has not been well elucidated. We investigated the inhibitory action of PACAP-27 on acid secretion and its mechanism in isolated vascularly perfused rat stomach. PACAP-27 in four graded doses (5, 10, 20, and 50 microg/h) was vascularly infused to determine its effect on basal and pentagastrin (50 ng/h)-stimulated acid secretion. To study the inhibitory mechanism of PACAP-27 on acid secretion, a rabbit antisecretin serum, antisomatostatin serum, or indomethacin was administered. Concentrations of secretin, somatostatin, PGE(2), and histamine in portal venous effluent were measured by RIA. PACAP-27 dose-dependently inhibited both basal and pentagastrin-stimulated acid secretion. PACAP-27 at 10 microg/h significantly increased concentrations of secretin, somatostatin, and PGE(2) in basal or pentagastrin-stimulated state. The inhibitory effect of PACAP-27 on pentagastrin-stimulated acid secretion was reversed 33% by an antisecretin serum, 80.0% by an antisomatostatin serum, and 46.1% by indomethacin. The antisecretin serum partially reduced PACAP-27-induced local release of somatostatin and PGE(2). PACAP-27 at 10 microg/h elevated histamine level in portal venous effluent, which was further increased by antisomatostatin serum. However, antisomatostatin serum did not significantly increase acid secretion. It is concluded that PACAP-27 inhibits both basal and pentagastrin-stimulated gastric acid secretion. The effect of PACAP-27 is mediated by local release of secretin, somatostatin, and PGE(2) in isolated perfused rat stomach. The increase in somatostatin and PGE(2) levels in portal venous effluent is, in part, attributable to local action of the endogenous secretin.  相似文献   

11.
We investigated the mechanism of action of methionine enkephalin (MEK) on HCl-stimulated secretin release and pancreatic exocrine secretion. Anesthetized rats with pancreatobiliary cannulas and isolated upper small intestinal loops were perfused intraduodenally with 0.01 N HCl while bile and pancreatic juice were diverted. The effect of intravenous MEK on acid-stimulated secretin release and pancreatic exocrine secretion was then studied with or without coinfusion of naloxone, an anti-somatostatin (SS) serum, or normal rabbit serum. Duodenal acid perfusate, which contains secretin-releasing peptide (SRP) activity, was collected from donor rats with or without pretreatment with MEK, MEK + naloxone, or MEK + anti-SS serum, concentrated by ultrafiltration, and neutralized. The concentrated acid perfusate (CAP), which contains SRP bioactivity, was infused intraduodenally into recipient rats. MEK increased plasma SS concentration and inhibited secretin release and pancreatic fluid and bicarbonate secretion dose-dependently. The inhibition was partially reversed by naloxone and anti-SS serum but not by normal rabbit serum. In recipient rats, CAP increased plasma secretin level and pancreatic secretion. CAP SRP bioactivity decreased when it was collected from MEK-treated donor rats; this was partially reversed by coinfusion with naloxone or anti-SS serum. These results suggest that in the rat, MEK inhibition of acid-stimulated pancreatic secretion and secretin release involves suppression of SRP activity release. Thus the MEK inhibitory effect appears to be mediated in part by endogenous SS.  相似文献   

12.
Pancreatico-biliary secretion is reduced during acute hyperglycemia. We investigated whether alterations in pancreatico-biliary flow or volume output are responsible for the observed reduction in duodenal output of pancreatic enzymes and bilirubin during hyperglycemia. Eight healthy subjects were studied on two occasions during normoglycemia and hyperglycemia (15 mmol/l). Pancreatico-biliary output was measured by aspiration using a recovery marker under basal conditions (60 min), during secretin infusion (0.1 CU/kg.h) for 60 min and during secretin + CCK (0.5 IDU/kg.h) infusion for 60 min. Secretin was infused to stimulate pancreatico-biliary flow and volume output. Secretin significantly (P<0.005-P<0.05) increased volume and bicarbonate output and CCK significantly (P<0.01) increased the output of bilirubin, pancreatic enzymes, bicarbonate and volume, both during normoglycemia and hyperglycemia. During hyperglycemia basal, secretin stimulated and secretin + CCK stimulated total pancreatico-biliary output were significantly (P<0.005-P<0.05) reduced compared to normoglycemia. The incremental outputs, however, were not significantly different between hyper- and normoglycemia. Pancreatic volume output was significantly (P<0.05) reduced during hyperglycemia compared to normoglycemia under basal conditions (31+/-16 m/h versus 132+/-33 m/h) during secretin infusion (130+/-17 ml/h versus 200+/-34 m/h) and during secretin + CCK infusion (370+/-39 ml/h versus 573+/-82 ml/h). Plasma PP levels were significantly (P<0.05) reduced during hyperglycemia. It is concluded that 1) hyperglycemia significantly reduces basal pancreatico-biliary output 2) the incremental pancreaticobiliary output in response to secretin or secretin + CCK infusion is not significantly affected during hyperglycemia, 3) a reduction in volume output contributes to the inhibitory effect of hyperglycemia on pancreatico-biliary secretion, 4) hyperglycemia reduces PP secretion suggesting vagal-cholinergic inhibition of pancreatico-biliary secretion and volume during hyperglycemia.  相似文献   

13.
The effects of a cow's milk diet on receptor activity and histamine metabolism in gastric glands and mucosa isolated from adult rats were examined. The milk diet was associated with (1) a decreased mobilization of H2 receptors by histamine and (2) an increased mobilization of PGE2 (prostaglandin E2) receptors in mucous cells (cytoprotective effect) and parietal cells (antiacid effect). These changes are not observed for the receptors reducing pentagastrin- and histamine-induced gastric acid secretion (pancreatic/enteroglucagons, somatostatin) and stimulating mucus, bicarbonate and pepsin secretions in the rat (secretin). Cimetidine produced a parallel displacement of the histamine dose-response curve, suggesting competitive inhibition between this classical H2 receptor antagonist and histamine in the two experimental groups. Prostaglandins and other components in milk such as EGF (epidermal growth factor) and somatostatin might therefore protect gastric mucosa by a differential control of PGE2 and histamine H2 receptor activity eitherdirectly (PGE2 in milk) orindirectly (inhibition of endogeneous histamine synthesis/release and stimulation of PGE-I synthesis/release).  相似文献   

14.
15.
Because GABA and its related enzymes have been determined in beta-cells of pancreas islets, effects of GABA on pancreatic exocrine secretion were investigated in the isolated, perfused rat pancreas. GABA, given intra-arterially at concentrations of 3, 10, 30, and 100 microM, did not exert any influence on spontaneous or secretin (12 pM)-induced pancreatic exocrine secretion. However, GABA further elevated CCK (10 pM)-, gastrin-releasing peptide (100 pM)-, or electrical field stimulation-induced pancreatic secretions of fluid and amylase dose dependently. The GABA (30 microM)-enhanced CCK-induced pancreatic secretions were completely blocked by bicuculline (10 microM), a GABA(A) receptor antagonist, but were not affected by saclofen (10 microM), a GABA(B) receptor antagonist. The enhancing effects of GABA (30 microM) on CCK-induced pancreatic secretions were not changed by tetrodotoxin (1 microM) but were partially reduced by cyclo-(7-aminoheptanonyl-Phe-D-Trp-Lys-Thr[BZL]) (10 nM), a somatostatin antagonist. In conclusion, GABA enhances pancreatic exocrine secretion induced by secretagogues, which predominantly induce enzyme secretion, via GABA(A) receptors in the rat pancreas. The enhancing effect of GABA is partially mediated by inhibition of islet somatostatin release.  相似文献   

16.
The effects of glucagon, gastric inhibitory peptide (GIP) and somatostatin on the generation of cyclic AMP have been studied under basal and histamine- or secretin-stimulated conditions in tubular gastric glands isolated by means of EDTA from the rat fundus and antrum. Four types of cell could be identified by electron microscopy; namely, parietal, mucous, peptic and some endocrine cells with a good morphological preservation of the cellular topography as seen in the intact mucosa. Immunoreactive somatostatin was found in antral glands (210 +/- 16 ng/g cell, wet wt., n = 9) as well as in fundic glands, but in smaller concentration (50 +/- 8 ng/g cell, wet wt., n = 9). (1) In rat fundic glands, glucagon, in supraphysiologic doses (3 . 10(-9) -5 . 10(-7) M), raised cyclic AMP levels 46 times above the basal. At maximally effective doses, combination of glucagon plus histamine was not additive whereas glucagon and secretin stimulations resulted in an additive response. Somatostatin (10(-10) -10(-7) M) inhibited both glucagon- and histamine-induced cyclic AMP production, whereas cimetidine specifically blocked the histaminergic stimulation. (2) In the same conditions, 10(-6)M glucagon produced a marginal effect (4-fold increase) in rat antrum, whereas GIP (10(-9) -10(-6)M) was unable to induce a significant rise of cyclic AMP production in either fundic or antral glands, or to prevent cyclic AMP production stimulated by histamine. (3) The present data do not support the view that circulating glucagon or GIP may regulate gastric secretion directly by a cyclic AMP-dependent mechanism in rat gastric glands and raise the possibility that gastric somatostatin may be the final mediator of the inhibitory actions of these hormones on acid secretion. (4) It is proposed that pancreatic glucagon acts through a receptor-cyclic AMP system which is specific for the bioactive peptide enteroglucagon ('oxyntomodulin'), probably in rat parietal cells.  相似文献   

17.
Immunofluorescent localization of secretin in pancreatic monolayer culture   总被引:1,自引:0,他引:1  
Summary Immunofluorescent cells to synthetic secretin were identified in monolayer culture of neonatal rat pancreas. No cross reaction of anti-secretin was observed with either glucagon, somatostatin or gastrin. The presence of cells containing secretin or a secretin-like peptide adds a new cell type to the three already characterized (insulin, glucagon and somatostatin containing cells) in monolayer culture.This work was supported by a grant (no. 3.553.75) from the Fonds National Suisse de la Recherche Scientifique, and a grant for cancer research from the Ministry of Public Welfare of Japan  相似文献   

18.
The effect of the administration of secretin and bethanechol on exocrine pancreatic secretion was studied in rabbits subjected to temperature changes; these involved a drop from 38 degrees C +/- 1 to 28 degrees C +/- 1 (hypothermia) and a subsequent return to 38 degrees C +/- 1 (normothermia). It was observed that hypothermia does not depress the action of secretin on the secretion of fluid, HCO3- and Cl-. Neither was the action of bethanechol on the enzyme secretion affected by changes in body temperature.  相似文献   

19.
王立东  周吕 《生理学报》1989,41(6):575-182
本工作利用血管灌流离体大鼠胃研究促胰液素和生长抑素对泌酸的影响及其与内源性前列腺素E(PGE)和前列环素(PGI_2)释放的关系。结果表明:(1)促胰液素和生长抑素都能有效地抑制五肽胃泌素(G_5)促进胃酸分泌的作用,消炎病可翻转这种抑制作用。(2)促胰液素能显著促进PGE和PGI_2代谢产物6-酮-前列腺素F_(1α)(6-Keto-PGF_(1α))释放;生长抑素只能促进FGE释放。消炎痛分别阻断促胰液素对PGE和6-keto-PGF_(1α)释放及生长抑素对PGE释放的促进作用。上述结果提示:(1)促胰液素的抑酸效应由促进PGI_2和PGE释放介导;(2)生长抑素的抑酸效应通过促进PGE释放介导。  相似文献   

20.
S N Murthy  G Ganiban 《Peptides》1988,9(3):583-588
We have compared the effects of the secretin family of peptides and their synthetic fragments on gastric emptying (GE) and small intestinal transit (SIT) using an unanesthetized rat model which simultaneously measures the GE and SIT of both solids and liquids. The meal consisting of 5% polyethylene glycol w/v, 5% Indian ink v/v and 20 non-digestible plastic beads was given intragastrically 10 minutes after the intraperitoneal injection of 0.5 ml of saline or peptides (2 and 5 micrograms/kg). Plasma secretin and the immunospecificity of secretin fragments were determined. In control rats, the t1/2 for the GE of both solids and liquids were 56 +/- 3.8 and 19 +/- 2.3 minutes, respectively. Liquids emptied faster than the solids and liquids travelled ahead of the solids in the intestine. Secretin (5 micrograms/kg) inhibited GE of both solids and liquids by 33-37%. Secretin delayed the SIT of the meal by approximately 35%. Fragments of secretin and of VIP had no effect on GE and SIT of both solids and liquids. The whole molecule of secretin was required to inhibit GE and to delay SIT of solids and liquids. Glucagon, PHI and growth hormone releasing factor (GHRF1-44) inhibited GE and SIT of both solids and liquids. For all peptides tested, the inhibition of SIT was proportional to the inhibition of GE suggesting that the prolongation of SIT was secondary to delayed GE. These observations indicate that the peptides of the secretin family inhibit GE and prolong SIT. Thus, the structural requirement required for the secretin family of peptides to effect their motor actions on the stomach is similar to that required for pancreatic enzyme secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号