首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alpha-sarcoglycan (ASG) is a transmembrane protein of the dystrophin-associated complex, and absence of ASG causes limb-girdle muscular dystrophy. We hypothesize that disruption of the sarcoglycan complex may alter muscle extensibility and disrupt the coupling between passive transverse and axial contractile elements in the diaphragm. We determined the length-tension relationships of the diaphragm of young ASG-deficient mice and their controls during uniaxial and biaxial loading. We also determined the isometric contractile properties of the diaphragm muscles from mutant and normal mice in the absence and presence of passive transverse stress. We found that the diaphragm muscles of the null mutants for the protein ASG show 1) significant decrease in muscle extensibility in the directions of the muscle fibers and transverse to fibers, 2) significant reductions in force-generating capacity, and 3) significant reductions in coupling between longitudinal and transverse properties. Thus these findings suggest that the sarcoglycan complex serves a mechanical function in the diaphragm by contributing to muscle passive stiffness and to the modulation of the contractile properties of the muscle.  相似文献   

2.
71 integrin is a transmembrane structural and receptor protein of skeletal muscles, and the absence of 7-integrin causes muscular dystrophy. We hypothesized that the absence of 7-integrin alters compliance and viscoelasticity and disrupts the mechanical coupling between passive transverse and axial contractile elements in the diaphragm. In vivo the diaphragm is loaded with pressure, and therefore axial and transverse length-tension relationships are important in assessing its function. We determined diaphragm passive length-tension relationships and the viscoelastic properties of its muscle in 1-month-old 7-integrin-null mice and age-matched controls. Furthermore, we measured the isometric contractile properties of the diaphragm from mutant and normal mice in the absence and presence of passive force applied in the transverse direction to fibers in 1-month-old and 5-month-old mutant mice. We found that compared with controls, the diaphragm direction of 7-integrin-null mutants showed 1) a significant decrease in muscle extensibility in 1-year-old mice, whereas muscle extensibility increased in the 1-month-old mice; 2) altered muscle viscoelasticity in the transverse direction of the muscle fibers of 1-month-old mice; 3) a significant increase in force-generating capacity in the diaphragms of 1-month-old mice, whereas in 5-month-old mice muscle contractility was depressed; and 4) significant reductions in mechanical coupling between longitudinal and transverse properties of the muscle fibers of 1-month-old mice. These findings suggest that 7-integrin serves an important mechanical function in the diaphragm by contributing to passive compliance, viscoelasticity, and modulation of its muscle contractile properties. muscular dystrophy; respiratory muscles; transmembrane proteins  相似文献   

3.
The role of extracellular elements on the mechanical properties of skeletal muscles is unknown. Merosin is an essential extracellular matrix protein that forms a mechanical junction between the sarcolemma and collagen. Therefore, it is possible that merosin plays a role in force transmission between muscle fibers and collagen. We hypothesized that deficiency in merosin may alter passive muscle stiffness, viscoelastic properties, and contractile muscle force in skeletal muscles. We used the dy/dy mouse, a merosin-deficient mouse model, to examine changes in passive and active muscle mechanics. After mice were anesthetized and the diaphragm or the biceps femoris hindlimb muscle was excised, passive length-tension relationships, stress-relaxation curves, or isometric contractile properties were determined with an in vitro biaxial mechanical testing apparatus. Compared with controls, extensibility was smaller in the muscle fiber direction and the transverse fiber direction of the mutant mice. The relaxed elastic modulus was smaller in merosin-deficient diaphragms compared with controls. Interestingly, maximal muscle tetanic stress was depressed in muscles from the mutant mice during uniaxial loading but not during biaxial loading. However, presence of transverse passive stretch increases maximal contractile stress in both the mutant and normal mice. Our data suggest that merosin contributes to muscle passive stiffness, viscoelasticity, and contractility and that the mechanism by which force is transmitted between adjacent myofibers via merosin possibly in shear.  相似文献   

4.
It has been shown that the modulation of the mechanical properties of sarcolemma mediated by nifedipine may be related to the dynamics of accumulation of calcium ions under short-term rat hindlimb suspension. The basal calcium level was measured with a fluorescent probe Fluo-4AM, the transverse stiffness of different parts of the contractile apparatus and sarcolemma was estimated by atomic force microscopy, and the content of desmin was determined by gel electrophoresis with immunoblotting. It has been found that nifedipine has a protective effect on muscle fibers under hypogravity by decreasing the degradation of desmin and proteins that determine the transverse stiffness of sarcolemma and the contractile apparatus, and the intensity of the increase in the basal calcium level. It was shown that selective blocking of L-channels leads to an increase in the basal calcium level in intact soleus fibers. At the same time, the transverse stiffness of sarcolemma and the contractile apparatus increases. The mechanism of this increase is still unclear, but it is thought to mediate the protective action of nifedipine.  相似文献   

5.
The diaphragmatic muscle tendon is a biaxially loaded junction in vivo. Stress-strain relations along and transverse to the fiber directions are important in understanding its mechanical properties. We hypothesized that 1) the central tendon possesses greater passive stiffness than adjacent muscle, 2) the diaphragm muscle is anisotropic, whereas the central tendon near the junction is essentially isotropic, and 3) a gradient in passive stiffness exists as one approaches the muscle-tendinous junction (MTJ). To investigate these hypotheses, we conducted uniaxial and biaxial mechanical loading on samples of the MTJ excised from the midcostal region of dog diaphragm. We measured passive length-tension relationships of the muscle, tendon, and MTJ in the direction along the muscle fibers as well as transverse to the fibers. The MTJ was slack in the unloaded state, resulting in a J-shaped passive tension-strain curve. Generally, muscle strain was greater than that of MTJ, which was greater than tendon strain. In the muscular region, stiffness in the direction transverse to the fibers is much greater than that along the fibers. The central tendon is essentially inextensible in the direction transverse to the fibers as well as along the fibers. Our data demonstrate the existence of more pronounced anisotropy in the muscle than in the tendon near the junction. Furthermore, a gradient in muscle stiffness exists as one approaches the MTJ, consistent with the hypothesis of continuous passive stiffness across the MTJ.  相似文献   

6.
Intermediate filaments in smooth muscle   总被引:1,自引:0,他引:1  
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle. cytoskeleton; force development; vimentin; desmin  相似文献   

7.
In many muscles, the tendinous structures include both an extramuscular free tendon as well as a sheet-like aponeurosis. In both free tendons and aponeuroses the collagen fascicles are oriented primarily longitudinally, along the muscle's line of action. It is generally assumed that this axis represents the direction of loading for these structures. This assumption is well founded for free tendons, but aponeuroses undergo a more complex loading regime. Unlike free tendons, aponeuroses surround a substantial portion of the muscle belly and are therefore loaded both parallel (longitudinal) and perpendicular (transverse) to a muscle's line of action when contracting muscles bulge to maintain a constant volume. Given this biaxial loading pattern, it is critical to understand the mechanical properties of aponeuroses in both the longitudinal and transverse directions. In this study, we use uniaxial testing of isolated tissue samples from the aponeurosis of the lateral gastrocnemius of wild turkeys to determine mechanical properties of samples loaded longitudinally (along the muscle's line of action) and transversely (orthogonal to the line of action). We find that the aponeurosis has a significantly higher Young's modulus in the longitudinal than in the transverse direction. Our results also show that aponeuroses can behave as efficient springs in both the longitudinal and transverse directions, losing little energy to hysteresis. We also test the failure properties of aponeuroses to quantify the likely safety factor with which these structures operate during muscular force production. These results provide an essential foundation for understanding the mechanical function of aponeuroses as biaxially loaded biological springs.  相似文献   

8.
Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures (r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps (r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.  相似文献   

9.
Myosin II isoforms with varying mechanochemistry and filament size interact with filamentous actin (F-actin) arrays to generate contractile forces in muscle and nonmuscle cells. How myosin II force production is shaped by isoform-specific motor properties and environmental stiffness remains poorly understood. Here, we used computer simulations to analyze force production by an ensemble of myosin motors against an elastically tethered actin filament. We found that force output depends on two timescales: the duration of F-actin attachment, which varies sharply with the ensemble size, motor duty ratio, and external load; and the time to build force, which scales with the ensemble stall force, gliding speed, and environmental stiffness. Although force-dependent kinetics were not required to sense changes in stiffness, the myosin catch bond produced positive feedback between the attachment time and force to trigger switch-like transitions from transient attachments, generating small forces, to high-force-generating runs. Using parameters representative of skeletal muscle myosin, nonmuscle myosin IIB, and nonmuscle myosin IIA revealed three distinct regimes of behavior, respectively: 1) large assemblies of fast, low-duty ratio motors rapidly build stable forces over a large range of environmental stiffness; 2) ensembles of slow, high-duty ratio motors serve as high-affinity cross-links with force buildup times that exceed physiological timescales; and 3) small assemblies of low-duty ratio motors operating at intermediate speeds are poised to respond sharply to changes in mechanical context—at low force or stiffness, they serve as low-affinity cross-links, but they can transition to force production via the positive-feedback mechanism described above. Together, these results reveal how myosin isoform properties may be tuned to produce force and respond to mechanical cues in their environment.  相似文献   

10.
Heterozygous mutations of the human desmin gene on chromosome 2q35 cause hereditary and sporadic myopathies and cardiomyopathies. The expression of mutant desmin brings about partial disruption of the extra sarcomeric desmin cytoskeleton and abnormal protein aggregation in the sarcoplasm of striated muscle cells. The precise molecular pathways and sequential steps that lead from a desmin gene defect to progressive muscle damage are still unclear. We tested whether mutant desmin changes the biomechanical properties and the intrinsic mechanical stress response of primary cultured myoblasts derived from a patient carrying a heterozygous R350P desmin mutation. Compared to wildtype controls, undifferentiated mutant desmin myoblasts revealed increased cell death and substrate detachment in response to cyclic stretch on flexible membranes. Moreover, magnetic tweezer microrheometry of myoblasts using fibronectin-coated beads showed increased stiffness of diseased cells. Our findings provide the first evidence that altered mechanical properties may contribute to the progressive striated muscle pathology in desminopathies. We postulate that the expression of mutant desmin leads to increased mechanical stiffness, which results in excessive mechanical stress in response to strain and consecutively to increased mechanical vulnerability and damage of muscle cells.  相似文献   

11.
Tissue softening is commonly reported during mechanical testing of biological tissues in vitro. The loss of stiffness may be due to viscoelasticity-induced softening (the time-history of load-caused softening) and strain-induced stress softening (the maximum previous load-caused softening). However, the knowledge about tissue softening behaviour is presently poor. The aims of this study were to distinguish whether the loss of the stiffness during preconditioning was due to strain softening or viscoelasticity and to test the tissue softening in circumferential and longitudinal direction in the guinea pig oesophagus. Eight repeated pressure controlled ramp distensions and eight uniaxial tensile-release ramp stretches in three series were done on eight guinea pig oesophagi. The stress–strain curves were used to display the time-dependency (viscoelasticity) and the maximum previous load-caused softening (strain softening) in circumferential and longitudinal directions. For both the longitudinal and the circumferential softening, the peak stress and stiffness produced during the first loading were bigger than those produced in the remaining loadings. The stress loss due to strain softening was about three times more than that due to viscoelasticity in the longitudinal direction. The strain increased more than two times between the strain softening and viscoelastic softening in the circumferential direction. With a stress level of 20 kPa, the stiffness in the circumferential direction lost more than that in the longitudinal direction (P<0.05), indicating the anisotropic softening properties in the oesophagus. In conclusion, the stiffness loss during preconditioning is mainly attributed to strain softening, appears irreversible and is anisotropic.  相似文献   

12.
The mechanical characteristics of smooth muscle can be broadly defined as either phasic, or fast contracting, and tonic, or slow contracting (, Pharmacol. Rev. 20:197-272). To determine if differences in the cross-bridge cycle and/or distribution of the cross-bridge states could contribute to differences in the mechanical properties of smooth muscle, we determined force and stiffness as a function of frequency in Triton-permeabilized strips of rabbit portal vein (phasic) and aorta (tonic). Permeabilized muscle strips were mounted between a piezoelectric length driver and a piezoresistive force transducer. Muscle length was oscillated from 1 to 100 Hz, and the stiffness was determined as a function of frequency from the resulting force response. During calcium activation (pCa 4, 5 mM MgATP), force and stiffness increased to steady-state levels consistent with the attachment of actively cycling cross-bridges. In smooth muscle, because the cross-bridge states involved in force production have yet to be elucidated, the effects of elevation of inorganic phosphate (P(i)) and MgADP on steady-state force and stiffness were examined. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 12 mM P(i), force and stiffness decreased proportionally, suggesting that cross-bridge attachment is associated with P(i) release. For the aorta, elevating P(i) decreased force more than stiffness, suggesting the existence of an attached, low-force actin-myosin-ADP- P(i) state. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 5 mM MgADP, force remained relatively constant, while stiffness decreased approximately 50%. For the aorta, elevating MgADP decreased force and stiffness proportionally, suggesting for tonic smooth muscle that a significant portion of force production is associated with ADP release. These data suggest that in the portal vein, force is produced either concurrently with or after P(i) release but before MgADP release, whereas in aorta, MgADP release is associated with a portion of the cross-bridge powerstroke. These differences in cross-bridge properties could contribute to the mechanical differences in properties of phasic and tonic smooth muscle.  相似文献   

13.
Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle.  相似文献   

14.
The mechanism(s) underlying eccentric damage to skeletal muscle cytoskeleton remain unclear. We examined the role of Ca(2+) influx and subsequent calpain activation in eccentric damage to cytoskeletal proteins. Eccentric muscle damage was induced by stretching isolated mouse muscles by 20% of the optimal length in a series of 10 tetani. Muscle force and immunostaining of the cytoskeletal proteins desmin, dystrophin, and titin were measured at 5, 15, 30, and 60 min after eccentric contractions and compared with the control group that was subjected to 10 isometric contractions. A Ca(2+)-free solution and leupeptin (100 microM), a calpain inhibitor, were applied to explore the role of Ca(2+) and calpain, respectively, in eccentric muscle damage. After eccentric contractions, decreases in desmin and dystrophin immunostaining were apparent after 5 min that accelerated over the next 60 min. Increased titin immunostaining, thought to indicate damage to titin, was evident 10 min after stretch, and fibronectin entry, indicating membrane disruption, was evident 20 min after stretch. These markers of damage also increased in a time-dependent manner. Muscle force was reduced immediately after stretch and continued to fall, reaching 56 +/- 2% after 60 min. Reducing extracellular calcium to zero or applying leupeptin minimized the changes in immunostaining of cytoskeletal proteins, reduced membrane disruption, and improved the tetanic force. These results suggest that the cytoskeletal damage and membrane disruption were mediated primarily by increased Ca(2+) influx into muscle cells and subsequent activation of calpain.  相似文献   

15.
We most often consider muscle as a motor generating force in the direction of shortening, but less often consider its roles as a spring or a brake. Here we develop a fully three-dimensional spatially explicit model of muscle to isolate the locations of forces and energies that are difficult to separate experimentally. We show the strain energy in the thick and thin filaments is less than one third the strain energy in attached cross-bridges. This result suggests the cross-bridges act as springs, storing energy within muscle in addition to generating the force which powers muscle. Comparing model estimates of energy consumed to elastic energy stored, we show that the ratio of these two properties changes with sarcomere length. The model predicts storage of a greater fraction of energy at short sarcomere lengths, suggesting a mechanism by which muscle function shifts as force production declines, from motor to spring. Additionally, we investigate the force that muscle produces in the radial or transverse direction, orthogonal to the direction of shortening. We confirm prior experimental estimates that place radial forces on the same order of magnitude as axial forces, although we find that radial forces and axial forces vary differently with changes in sarcomere length.  相似文献   

16.
The purpose of this study was to test whether surface mechanomyogram (MMG) recorded on the skin reflects the contractile properties of individual motor units in humans. Eight motor units in the medial gastrocnemius muscle were identified, and trains of stimulation at 5, 10, 15, and 20 Hz were delivered to each isolated motor unit. There was a significant positive correlation between the duration of MMG and twitch duration. MMG amplitude decreased with increasing stimulation frequency. Reductions in MMG amplitude were in parallel with the reductions in force fluctuations, and the rate of change in both was positively correlated across the motor units. Rate of change in MMG amplitude against force was negatively correlated to half relaxation time and twitch duration. Similar negative correlations were found between force fluctuations and contractile properties. These results provide evidence supporting a direct relation between MMG and contractile properties of individual motor units within the gastrocnemius muscle, indicating that surface MMG is dependent on the contractile properties of the activated motor units in humans.  相似文献   

17.
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.  相似文献   

18.
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction. cytoskeleton; prestress; stress fibers; mechanotransduction; mechanical deformation  相似文献   

19.
Mechanical interactions between desmin and Z-disks, costameres, and nuclei were measured during passive deformation of single muscle cells. Image processing and continuum kinematics were used to quantify the structural connectivity among these structures. Analysis of both wild-type and desmin-null fibers revealed that the costamere protein talin colocalized with the Z-disk protein alpha-actinin, even at very high strains and stresses. These data indicate that desmin is not essential for mechanical coupling of the costamere complex and the sarcomere lattice. Within the sarcomere lattice, significant differences in myofibrillar connectivity were revealed between passively deformed wild-type and desmin-null fibers. Connectivity in wild-type fibers was significantly greater compared to desmin-null fibers, demonstrating a significant functional connection between myofibrils that requires desmin. Passive mechanical analysis revealed that desmin may be partially responsible for regulating fiber volume, and consequently, fiber mechanical properties. Kinematic analysis of alpha-actinin strain fields revealed that knockout fibers transmitted less shear strain compared to wild-type fibers and experienced a slight increase in fiber volume. Finally, linkage of desmin intermediate filaments to muscle nuclei was strongly suggested based on extensive loss of nuclei positioning in the absence of desmin during passive fiber loading.  相似文献   

20.
Sonomicrometrics of in vivo axial strain of muscle has shown that the swimming fish body bends like a homogenous, continuous beam in all species except tuna. This simple beam-like behavior is surprising because the underlying tendon structure, muscle structure and behavior are complex. Given this incongruence, our goal was to understand the mechanical role of various myoseptal tendons. We modeled a pumpkinseed sunfish, Lepomis gibbosus, using experimentally-derived physical and mechanical attributes, swimming from rest with steady muscle activity. Axially oriented muscle-tendons, transverse and axial myoseptal tendons, as suggested by current morphological knowledge, interacted to replicate the force and moment distribution. Dynamic stiffness and damping associated with muscle activation, realistic muscle force generation, and force distribution following tendon geometry were incorporated. The vertebral column consisted of 11 rigid vertebrae connected by joints that restricted bending to the lateral plane and endowed the body with its passive viscoelasticity. In reaction to the acceleration of the body in an inviscid fluid and its internal transmission of moment via the vertebral column, the model predicted the kinematic response. Varying only tendon geometry and stiffness, four different simulations were run. Simulations with only intrasegmental tendons produced unstable axial and lateral tail forces and body motions. Only the simulation that included both intra- and intersegmental tendons, muscle-enhanced segment stiffness, and a stiffened caudal joint produced stable and large lateral and axial forces at the tail. Thus this model predicts that axial tendons function within a myomere to (1) convert axial force to moment (moment transduction), (2) transmit axial forces between adjacent myosepta (segment coupling), and, intersegmentally, to (3) distribute axial forces (force entrainment), and (4) stiffen joints in bending (flexural stiffening). The fact that all four functions are needed to produce the most realistic swimming motions suggests that axial tendons are essential to the simple beam-like behavior of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号