首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following the initial report of the use of SYBR Green I for real-time polymerase chain reaction (PCR) in 1997, little attention has been given to the development of alternative intercalating dyes for this application. This is surprising considering the reported limitations of SYBR Green I, which include limited dye stability, dye-dependent PCR inhibition, and selective detection of amplicons during DNA melting curve analysis of multiplex PCRs. We have tested an alternative to SYBR Green I and report the first detailed evaluation of the intercalating dye SYTO9. Our findings demonstrate that SYTO9 produces highly reproducible DNA melting curves over a broader range of dye concentrations than does SYBR Green I, is far less inhibitory to PCR than SYBR Green I, and does not appear to selectively detect particular amplicons. The low inhibition and high melting curve reproducibility of SYTO9 means that it can be readily incorporated into a conventional PCR at a broad range of concentrations, allowing closed tube analysis by DNA melting curve analysis. These features simplify the use of intercalating dyes in real-time PCR and the improved reproducibility of DNA melting curve analysis will make SYTO9 useful in a diagnostic context.  相似文献   

2.
Currently, in real-time PCR, one often has to choose between using a sequence-specific probe and a nonspecific double-stranded DNA (dsDNA) binding dye for the detection of amplified DNA products. The sequence-specific probe has the advantage that it only detects the targeted product, while the nonspecific dye has the advantage that melting curve analysis can be performed after completed amplification, which reveals what kind of products have been formed. Here we present a new strategy based on combining a sequence-specific probe and a nonspecific dye, BOXTO, in the same reaction, to take the advantage of both chemistries. We show that BOXTO can be used together with both TaqMan probes and locked nucleic acid (LNA) probes without interfering with the PCR. The probe signal reflect formation of target product, while melting curve analysis of the BOXTO signal reveals primer-dimer formation and the presence of any other anomalous products.  相似文献   

3.
A temperature sensor array chip was developed to monitor the thermal cycling profiles of a polymerase chain reaction (PCR). DNA amplification efficiency of each cycle was estimated through temperature data to fit the stochastic model. A fluorescence detector system was constructed to detect the PCR amplifications of latter cycles, at which the fluorescence intensity passed the optical detection threshold. Through monitoring of both temperature and fluorescence, DNA amplification efficiency curve was completed for quantification. The F?rster resonance energy transfer (FRET) was employed to detect the measurements of the PCR product amount at the reaction endpoint. The chip-based, real-time PCR machine was constructed to perform the amplification efficiency curve-based quantification method. This novel method achieved the absolute quantification of the Hepatitis B virus (HBV) DNA using a single sample without the construction of the standard curve. The coefficient of variation (CV) of the 15 replicates inter assay experiments was less than 5.87%. Compared with the CV values obtained from the commercial machine in the range of 4.33-14.56%, it is noted that CV values of the prototype with respect to the samples of different initial concentration ranging from 10(7) to 10(3)copies/ml are almost equable.  相似文献   

4.
5.
Emulsion polymerase chain reaction, an effective amplification, can make millions of templates could be individually amplified within a single tube. Here we constructed and improved a low melting point agarose-emulsion method to promote the specific sequences amplification effectively. Artificial Lactobacillus Plasmid as template was amplified and clear fluorescence images of the agarose beads were obtained. The Real-time PCR data showed that agarose-emulsion PCR clearly indicated that DNA can be amplified in agarose droplets. Overall, our study effectively overcame the difficulty of formation of uniform emulsion droplets, negative effect on recombination of homologous regions of DNA and generation of void emulsion droplets. This method increases the accuracy with amplification, reduces the influence of uncertainties and provides the reliable data for further experiment.  相似文献   

6.
Dependence of the melting temperature of DNA on salt concentration   总被引:71,自引:0,他引:71  
C Schildkraut 《Biopolymers》1965,3(2):195-208
  相似文献   

7.
The design of microarrays is currently based on studies focusing on DNA hybridization reaction in bulk solution. However, the presence of a surface to which the probe strand is attached can make the solution‐based approximations invalid, resulting in sub‐optimum hybridization conditions. To determine the effect of surfaces on DNA duplex formation, the authors studied the dependence of DNA melting temperature (Tm) on target concentration. An automated system was developed to capture the melting profiles of a 25‐mer perfect‐match probe–target pair initially hybridized at 23°C. Target concentrations ranged from 0.0165 to 15 nM with different probe amounts (0.03–0.82 pmol on a surface area of 1018 Å2), a constant probe density (5 × 1012 molecules/cm2) and spacer length (15 dT). The authors found that Tm for duplexes anchored to a surface is lower than in‐solution, and this difference increases with increasing target concentration. In a representative set, a target concentration increase from 0.5 to 15 nM with 0.82 pmol of probe on the surface resulted in a Tm decrease of 6°C when compared with a 4°C increase in solution. At very low target concentrations, a multi‐melting process was observed in low temperature domains of the curves. This was attributed to the presence of truncated or mismatch probes. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
The polymerase chain reaction is an immensely powerful technique for identification and detection purposes. Increasingly, competitive PCR is being used as the basis for quantification. However, sequence length, melting temperature and primary sequence have all been shown to influence the efficiency of amplification in PCR systems and may therefore compromise the required equivalent co-amplification of target and mimic in competitive PCR. The work discussed here not only illustrates the need to balance length and melting temperature when designing a competitive PCR assay, but also emphasises the importance of careful examination of sequences for GC-rich domains and other sequences giving rise to stable secondary structures which could reduce the efficiency of amplification by serving as pause or termination sites. We present data confirming that under particular circumstances such localised sequence, high melting temperature regions can act as permanent termination sites, and offer an explanation for the severity of this effect which results in prevention of amplification of a DNA mimic in competitive PCR. It is also demonstrated that when Taq DNA polymerase is used in the presence of betaine or a proof reading enzyme, the effect may be reduced or eliminated.  相似文献   

9.
Aims: Tuberculous pleurisy is an important cause of pleural effusions in areas with a high incidence of tuberculosis. In this study, we developed an IS1081‐based LAMP for the detection of Mycobacterium tuberculosis complex and investigated its usefulness in the diagnosis of tuberculous pleurisy. Methods and Results: Investigation of pleural effusion samples from patients with tuberculous pleurisy, majority of them smear‐/culture‐negative, and control individuals with non‐TB diseases showed that the LAMP assay with incubation time of 60 min has much higher specificity and the LAMP assay with incubation time of 90 min has significantly higher sensitivity in the diagnosis of tuberculous pleurisy, as compared with fluorescent real‐time PCR. Conclusions: The MTBC–LAMP is a useful assay for the diagnosis of tuberculous pleurisy, especially in pleural effusion smear‐/culture‐negative patients. Significance and Impact of the Study: Tuberculous pleural effusion usually contains low number of mycobacteria, which leads to low diagnostic sensitivity of acid‐fast staining and mycobacterial culture methods. In this study, we developed a simple and sensitive LAMP assay for the diagnosis of tuberculous pleurisy. This assay should have broad application in resource‐limited settings.  相似文献   

10.
Rapid PCR amplification of DNA utilizing Coriolis effects   总被引:2,自引:0,他引:2  
A novel polymerase chain reaction (PCR) method is presented that utilizes Coriolis and centrifugal effects, produced by rotation of the sample disc, in order to increase internal circulatory rates, and with them temperature homogenization and mixing speeds. A proof of concept has been presented by testing a rapid 45-cycle PCR DNA amplification protocol. During the repeated heating and cooling that constitutes a PCR process, the 100 μL samples were rotated at a speed equivalent to an effective acceleration of gravity of 7,000 g. A cycle time of 20.5 s gave a total process time of 15 min to complete the 45 cycles. A theoretical and numerical analysis of the resulting flow, which describes the increased mixing and temperature homogenization, is presented. The device gives excellent reaction speed efficiency, which is beneficial for rapid PCR.  相似文献   

11.
Locked nucleic acid (LNA) is a modified DNA with increased binding affinityfor complementary DNA sequences. Our strategy was to use this property of LNA to inhibit undesired PCR amplification (e.g.,from contaminating genomic DNA) in a cDNA-based assay. By placing a short complementary LNA sequence in intronic DNA, the aim was to inhibit the amplification of genomic DNA without affecting the amplification of reverse-transcribed spliced mRNA. LNA was designed to bind within intron 5 in the x-box binding protein 1 (XBP1) gene. An irrelevant LNA oligonucleotide served as a negative control. In both PCR and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking activity. More than three DNA nucleotides reduced the LNA inhibition ability. The sequence specificity of the LNA was tested by investigating the number of LNA nucleotide mismatches permitted. The introduction of one mismatch maintained the inhibition of genomic amplification whereas two mismatches reduced the amplification. Our results show that LNA may be used to enhance the specificity of PCR by eliminating unwanted PCR products.  相似文献   

12.
Salmon eggs are common in Japanese sushi and other seafood products; however, certain fish eggs are used as counterfeit salmon eggs which are found in foods and processed products. This study develops a simple, rapid, and cost-effective method for DNA extraction, filtration (FT) and dilution (DL) protocols from a single salmon egg with good DNA quality for real-time PCR amplification. The DNA amount, DNA quality, and real-time PCR performance for different dilutions and different lengths of PCR amplicons were evaluated and compared with the common Qiagen tissue kit (QTK) and Chelex-100-based (CX) protocols. The extracted DNA from a single salmon egg using the FT or DL protocol can be applied in phylogenic research, food authentication and post-marketing monitoring of genetically modified (GM) food products.  相似文献   

13.
14.
15.
MOTIVATION: The overall performance of several molecular biology techniques involving DNA/DNA hybridization depends on the accurate prediction of the experimental value of a critical parameter: the melting temperature Tm. Till date, many computer software programs based on different methods and/or parameterizations are available for the theoretical estimation of the experimental Tm value of any given short oligonucleotide sequence. However, in most cases, large and significant differences in the estimations of Tm were obtained while using different methods. Thus, it is difficult to decide which Tm value is the accurate one. In addition, it seems that most people who use these methods are unaware about the limitations, which are well described in the literature but not stated properly or restricted the inputs of most of the web servers and standalone software programs that implement them. RESULTS: A quantitative comparison on the similarities and differences among some of the published DNA/DNA Tm calculation methods is reported. The comparison was carried out for a large set of short oligonucleotide sequences ranging from 16 to 30 nt long, which span the whole range of CG-content. The results showed that significant differences were observed in all the methods, which in some cases depend on the oligonucleotide length and CG-content in a non-trivial manner. Based on these results, the regions of consensus and disagreement for the methods in the oligonucleotide feature space were reported. Owing to the lack of sufficient experimental data, a fair and complete assessment of accuracy for the different methods is not yet possible. Inspite of this limitation, a consensus Tm with minimal error probability was calculated by averaging the values obtained from two or more methods that exhibit similar behavior to each particular combination of oligonucleotide length and CG-content class. Using a total of 348 DNA sequences in the size range between 16mer and 30mer, for which the experimental Tm data are available, we demonstrated that the consensus Tm is a robust and accurate measure. It is expected that the results of this work would be constituted as a useful set of guidelines to be followed for the successful experimental implementation of various molecular biology techniques, such as quantitative PCR, multiplex PCR and the design of optimal DNA microarrays.  相似文献   

16.
Many factors that change the temperature position and interval of the DNA helix–coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable “jagged” Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na+], and GC content. At the same time, Tm determined as the helix–coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na+], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix–coil transition enthalpy/entropy ratio).  相似文献   

17.
Quantitative real-time PCR (qPCR) has been widely implemented for clinical hepatitis B viral load testing, but a lack of standardization and relatively poor precision hinder its usefulness. Droplet digital PCR (ddPCR) is a promising tool that offers high precision and direct quantification. In this study, we compared the ddPCR QX100 platform by Bio-Rad with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, USA) to detect serial plasmid DNA dilutions of known concentrations as well as HBV DNA extracted from patient serum samples. Both methods showed a high degree of linearity and quantitative correlation. However, ddPCR assays generated more reproducible results and detected lower copy numbers than qPCR assays. Patient sample quantifications by ddPCR and qPCR were highly agreeable based on the Bland–Altman analysis. Collectively, our findings demonstrate that ddPCR offers improved analytical sensitivity and specificity for HBV measurements and is suitable for clinical HBV detection.  相似文献   

18.
We performed a real-time PCR assay to detect herpes simplex virus (HSV) DNA, and compared it prospectively with a nested PCR assay in 164 clinical samples (109 cerebrospinal fluid and 55 sera) from patients suspected of having neonatal HSV infection or HSV encephalitis. In 25 of 164 samples, HSV DNA was detected by the nested PCR assay. All samples positive for HSV DNA in the nested PCR assay were also positive in the real-time PCR assay, and all but two samples negative for HSV DNA in the nested assay were negative in the real-time assay. The real-time PCR assay thus had a sensitivity of 100% and a specificity of 99%, when compared with the nested assay. Sequential assays in a case of disseminated HSV showed that a decrease in HSV DNA paralleled clinical improvement. Quantification of HSV DNA by real-time PCR was useful for diagnosing and monitoring patients with HSV encephalitis and neonatal HSV infection.  相似文献   

19.
Lim S  Yoon H  Ryu S  Jung J  Lee M  Kim D 《Radiation research》2006,165(4):430-437
To study the radiosensitivity of DNA segments at the open reading frame (gene) level, real-time PCR was used to analyze DNA damages induced by ionizing radiation. After irradiation (1, 3 and 5 kGy) of genomic DNA purified from Salmonella typhimurium, real-time PCR based on SYBR Green fluorescence and melting temperature was performed using various primer sets targeting the rfbJ, rfaJ, rfaB, hilD, ssrB, pipB, sopD, pduQ, eutG, oadB, ccmB and ccmA genes. The ccmA and ccmB genes, which existed as two copies on the chromosome and had a high GC content ( approximately 70%), showed much lower radiosensitivities than the other genes tested, particularly at 5 kGy; this distinctive feature was seen only when the genes were located on the chromosome, regardless of copy number. Our results reinforce the concept that gene sensitivity to ionizing radiation depends on the base composition and/or the spatial localization of the gene on the chromosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号