首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead tolerance and accumulation in five willow clones were investigated using a nutrient film technique. Plants were exposed to 0, 48, 121, 169, or 241 microM Pb for 14 days. Tolerance indices (TI) and critical toxicity thresholds (EC50) were determined for five willow clones. SX61 had the highest TI values (92%) in the 48 and 121 microM Pb treatments, as well as the highest EC50 threshold values (70.5 microM for roots, 155.9 microM for aboveground tissue), indications of a high degree of tolerance to Pb. This clone also developed the highest biomass of all the clones tested. We found significant variation in willows' lead accumulation. The highest Pb content in roots (24 mg plant(-1)) and aboveground tissue (7.6 mg plant(-1)) was recorded in the 48 microM Pb treatment in SX61. Based on high biomass, TI, ECso, and Pb content in plant tissues, SX61 holds promise for phytoextraction of lead.  相似文献   

2.
选取了我国10个典型的不同性质农田土壤,外源添加8个不同Pb浓度,分别进行淋洗与非淋洗处理,根据ISO 11269-1根伸长毒性测试方法,测定了土壤外源Pb对大麦根伸长的毒性阈值(EC10、EC50)及Pb毒性的淋洗因子,同时建立了基于不同土壤性质的Pb毒性阈值预测模型. 结果表明: 不同性质土壤中Pb对大麦根伸长的毒性阈值有显著差异(P<0.01),EC50 值在300~4130 mg·kg-1,EC10 值在55~633 mg·kg-1. 淋洗处理明显降低了土壤中外源Pb的毒性,基于EC50和EC10测定的不同土壤淋洗因子(LFECx)的变化范围分别为0.96~1.96(LFEC50)和1.03~1.81(LFEC10). 相比而言,在酸性(pH<6.81)土壤中,淋洗处理对降低土壤外源Pb的毒性作用更为明显. 基于主控因子(pH、有机碳含量OC、阳离子交换量CEC)的淋洗与非淋洗土壤中Pb的大麦根伸长毒性(ECx,x=10,50)预测模型表明,除了江西红壤外,淋洗与非淋洗土壤中Pb的EC50实测值均落在模型预测值±2倍标准误差范围之内,说明基于上述土壤主要性质可以较好预测不同性质土壤中Pb的毒性阈值.  相似文献   

3.
选取了6种不同性质土壤, 添加7个浓度水平的Zn, 研究了不同老化时间(14、90、180、360和540 d)对土壤中外源性Zn有效形态及毒性阈值(ECx)的影响, 并对Zn老化过程的主要影响因子进行分析. 结果表明: 土壤中0.01 mol·L-1CaCl2提取态Zn含量随着老化时间的增加先快速下降, 随后变化减缓, 到540 d时基本达到平衡.随着老化时间的增加, 土壤中Zn对小白菜生长的毒性阈值(ECx, x=10、50)逐渐增加,毒性显著降低(P<0.05).Zn老化因子(AF)AF10和AF50分别为1.077~1.743和1.174~1.441, 老化因子随老化时间增加而增大.土壤中Zn的平衡浓度(C)与土壤pH、阳离子交换量(CEC)、有机碳含量呈显著负相关关系, 其中pH是决定Zn老化速率最重要的因素, 其次是CEC和有机碳含量,高pH下土壤中Zn达到平衡所需的时间较短. 基于土壤老化因子与主控因子建立土壤中Zn的毒性阈值预测模型,所得预测值与实测值之间有较好的相关性.研究结果将为不同土壤中外源性Zn毒性阈值的归一化处理及生态风险基准值的制定提供理论依据.  相似文献   

4.
Two agriculturally important species of rhizobia, Rhizobium leguminosarum biovar viciae (pea rhizobia) and R. leguminosarum bv. trifolii (white clover rhizobia), were enumerated in soils of a long-term field experiment to which sewage sludges contaminated predominantly with Zn or Cu, or Zn plus Cu, were added in the past. In addition to total soil Zn and Cu concentrations, soil pore water soluble Zn and free Zn2+, and soluble Cu concentrations are reported. Pea and white clover rhizobia were greatly reduced in soils containing ≥200 mg Zn kg-1, and soil pore water soluble Zn and free Zn2+ concentrations ≥7 and ≥3 mg l-1, respectively, in soils of pH 5.9–6. Copper also reduced rhizobial numbers, but only at high total soil concentrations (>250 mg kg-1) and not to the same extent as Zn. Yields of field grown peas decreased significantly as total soil Zn, soil pore water soluble Zn and free Zn+2 increased (R2 = 0.79, 0.75 and 0.75, respectively; P < 0.001). A 50% reduction in seed yield occurred at a total soil Zn concentration of about 290 mg kg-1, in soils of pH 5.9–6. The corresponding soil pore water soluble Zn and free Zn2+ concentrations were about 9 and 4 mg l-1, respectively. Pea seed yields were not significantly correlated with total soil Cu (R2 = 0.33) or soil pore water soluble Cu (R2 = 0.39). Yield reductions were due to a combination of greatly reduced numbers of free-living rhizobia in the soil due to Zn toxicity, thus indirectly affecting N2-fixation, and Zn phytotoxicity. These effects were exacerbated in slightly acidic soils due to increased solubility of Zn, and to some extent Cu, and an increase in the free Zn2+ fraction in soil pore water. The current United Kingdom, German and United States limits for Zn and Cu in soils are discussed in view of the current study. None of these limits are based on toxicity thresholds in soil pore water, which may have wider validity for different soil types and at different pH values than total soil concentrations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Marine water quality criteria for metals are largely driven by the extremely sensitive embryo-larval toxicity of Mytilus sp. Here we assess the toxicity of four dissolved metals (Cu, Zn, Ni, Cd) in the mussel Mytilus trossolus, at various salinity levels while also examining the modifying effects of dissolved organic carbon (DOC) on metal toxicity. In 48 h embryo development tests in natural seawater, measured EC50 values were 6.9-9.6 microg L(-1) (95% C.I.=5.5-10.8 microg L(-1)) for Cu, 99 microg L(-1) (86-101) for Zn, 150 microg L(-1) (73-156) for Ni, and 502 microg L(-1) (364-847) for Cd. A salinity threshold of >20 ppt (approximately 60% full strength seawater) was required for normal control development. Salinity in the 60-100% range did not alter Cu toxicity. Experimental addition of dissolved organic carbon (DOC) from three sources reduced Cu toxicity; for example the EC50 of embryos developing in seawater with 20 mg C L(-1) was 39 microg Cu L(-1) (35.2-47.2) a 4-fold increase in Cu EC50. The protective effects of DOC were influenced by their distinct physicochemical properties. Protection appears to be related to higher fulvic acid and lower humic acid content as operationally defined by fluorescence spectroscopy. The fact that DOC from freshwater sources provides protection against Cu toxicity in seawater suggests that extrapolation from freshwater toxicity testing may be possible for saltwater criteria development, including development of a saltwater Biotic Ligand Model for prediction of Cu toxicity.  相似文献   

6.
The experiment assessed the variability of in seven clones of willow plants of high biomass production (Salix smithiana S-218, Salix smithiana S-150, Salix viminalis S-519, Salix alba S-464, Salix ’Pyramidalis’ S-141, Salix dasyclados S-406, Salix rubens S-391). They were planted in a pots for three vegetation periods in three soils differing in the total content of risk elements. Comparing the calculated relative decrease of total metal contents in soils, the phytoextraction potential of willows was obtained for cadmium (Cd) and zinc (Zn), moderately contaminated Cambisol and uncontaminated Chernozem, where aboveground biomass removed about 30% Cd and 5% Zn of the total element content, respectively. The clones showed variability in removing Cd and Zn, depending on soil type and contamination level: S. smithiana (S-150) and S. rubens (S-391) demonstrated the highest phytoextraction effect for Cd and Zn. For lead (Pb) and arsenic (As), the ability to accumulate the aboveground biomass of willows was found to be negligible in both soils. The results confirmed that willow plants show promising results for several elements, mainly for mobile ones like cadmium and zinc in moderate levels of contamination. The differences in accumulation among the clones seemed to be affected more by the properties of clones, not by the soil element concentrations or soil properties. However, confirmation and verification of the results in field conditions as well as more detailed investigation of the mechanisms of cadmium uptake in rhizosphere of willow plants will be determined by further research.  相似文献   

7.
6种重金属对赤子爱胜蚓的急性毒性效应与风险评价   总被引:3,自引:0,他引:3       下载免费PDF全文
【背景】近年来,土壤重金属污染问题日益凸显,对生态环境、食品安全和人体健康构成了严重威胁,其急性毒性尚未明确。【方法】采用滤纸接触法和人工土壤法测定了铜(Cu2+)、锌(Zn2+)、镍(Ni+)、镉(Cd2+)、铅(Pb2+)和锰(Mn2+)等6种重金属对赤子爱胜蚓的急性毒性效应,并参照欧盟指令91/414/EEC标准评价了其环境风险。【结果】滤纸接触法48h测定结果表明,6种重金属对蚯蚓的LC50为3.17(2.53~3.81)~90.42(69.45~140.47)μg.cm-2,其毒性次序为Cu2+>Zn2+>Ni+>Cd2+>Pb2+>Mn2+。人工土壤法14d测定结果表明,6种重金属对蚯蚓的LC50为1347(1236~1453)~6936(6144~8930)mg.kg-1,其毒性次序为Cu2+>Cd2+>Ni+>Zn2+>Mn2+>Pb2+。风险评价结果显示,Cu2+、Zn2+、Ni+、Cd2+、Pb2+和Mn2+等6种重金属的暴露比(toxicity/exposureratio,TER)分别为3.37、4.46、8.68、1428、13.87和5.85。【结论与意义】6种重金属对土壤动物蚯蚓均具有潜在的毒性效应。Cu2+、Zn2+、Ni+、Mn2+等4种重金属对赤子爱胜蚓存在急性毒性风险,而Cd2+和Pb2+对赤子爱胜蚓的急性毒性风险水平是可接受的。该评价结果可为我国制定基于风险的土壤环境质量标准提供依据。  相似文献   

8.
Manganese mining activities in the Drama district, northern Greece, have resulted in a legacy of abandoned mine wastes at the “25 km Mn-mine” site. Current research was focused on the western Drama plain (WDP), constituting the recipient of the effluents from Xiropotamos stream, which passes through the “25 km Mn-mine” place. A total of 148 top soil samples were collected and their heavy metals (HMs) concentrations (Mn, Pb, Zn, Cu, Cd, and As) were determined using inductively coupled plasma mass spectrometry. Enrichment factor (EF), geoaccumulation index (Igeo), and pollution load index (PLI) were calculated as an effort to assess metal accumulation, distribution, and pollution status of the soils due to the former mining activity. The overall potential ecological risk of HMs to the environment was also evaluated using the potential toxicity response index (RI). Results showed that peak values of the elements (13 wt% for Mn, 0.2 wt% for Pb, 0.2 wt% for Zn, 0.1 wt% for As, 153 mg/kg for Cu, and 27.5 mg/kg for Cd) were found in soils from sites close to and along both sides of the Xiropotamos stream. In this sector of WDP, values of EF, Igeo, and PLI classify the soils as moderately to highly polluted with Mn, Pb, Zn, Cd, and As. Based on RI values, soils in this part of WDP display considerable to very great potential ecological risk and, therefore, a remediation has to be applied. The main cause of soil contamination is considered the Xiropotamos downstream transfer and dispersion of Mn mine wastes via flooding episodes.  相似文献   

9.
The objective of this study was to investigate the phytoremediation potential of mycorrhizal systems for the remediation of aldrin-contaminated soils. Feltleaf willow (Salix alaxensis) and balsam poplar (Populus balsamifera) were grown in soil spiked with 0.8 mg/kg aldrin- (1,2,3,4,10-14C). Daconil2787® was employed to suppress indigenous mycorrhizal infection. After 100 days of greenhouse incubation, mycorrhizal infection in the fungicide-amended willows was found to be 2.5 fold lower than in controls. Mycorrhizal infection in the poplar systems was unaffected by fungicide addition. Mycorrhizae were correlated with radiolabel uptake in the willow systems (r = 0.79), and not as strongly in the poplar systems (r = 0.58). Most of the radiolabel in the root material was bound product regardless of mycorrhizal infection, but 12 to 21% was found to be extractable dieldrin. Aldrin was not detected in any vegetative matrix. Dieldrin constituted less than 1% of the radiolabel in the willow leaf material, accumulating to approximately 5 μg/kg. Dieldrin was not detected in the poplar leaves (MDL ≈ 1 μg/kg), although the poplars took up approximately the same amount of radiolabel as the willows. Water-soluble transformation products were formed in the vegetated soils (6 to 12%) and nonvegetated controls (1 to 2%).  相似文献   

10.
Zinc deficiency as a critical problem in wheat production in Central Anatolia   总被引:19,自引:0,他引:19  
In a soil and plant survey, and in field and greenhouse experiments the nutritional status of wheat plants was evaluated for Zn, Fe, Mn and Cu in Central Anatolia, a semi-arid region and the major wheat growing area of Turkey.All 76 soils sampled in Central Anatolia were highly alkaline with an average pH of 7. 9. More than 90% of soils contained less than 0.5 mg kg-1 DTPA-extractable Zn, which is widely considered to be the critical deficiency concentration of Zn for plants grown on calcareous soils. About 25% of soils contained less than 2.5 mg kg-1 DTPA-extractable Fe which is considered to be the critical deficiency concentration of Fe for plants. The concentrations of DTPA-extractable Mn and Cu were in the sufficiency range. Also the Zn concentrations in leaves were very low. More than 80% of the 136 leaf samples contained less than 10 mg Zn kg–1. By contrast, concentrations of Fe, Mn and Cu in leaves were in the sufficient range.In the field experiments at six locations, application of 23 kg Zn ha-1 increased grain yield in all locations. Relative increases in grain yield resulting from Zn application ranged between 5% to 554% with a mean of 43%. Significant increases in grain yield (more than 31%) as a result of Zn application were found for the locations where soils contained less than 0.15 mg kg-1 DTPA-extractable Zn.In pot experirnents with two bread (Triticum aestivum, cvs. Gerek-79 and Kirac-66) and two durum wheats (Triticum durum, cvs. Kiziltan-91 and Kunduru-1149), an application of 10 mg Zn kg-1 soil enhanced shoot dry matter production by about 3.5-fold in soils containing 0.11 mg kg-1 and 0.15 mg kg-1 DTPA-extractable Zn. Results from both field observations and greenhouse experiments showed that durum wheats were more susceptible to Zn deficiency than the bread wheats. On Zn deficient soils, durum wheats as compared to bread wheats developed deficiency symptoms in shoots earlier and to a greater extent, and had lower Zn concentration in shoot tissue and lower Zn content per shoot than the bread wheats.The results presented in this paper demonstrate that (i) Zn deficiency is a critical nutritional problem in Central Anatolia substantially limiting wheat production, (ii) durum wheats possess higher sensitivity to Zn deficient conditions than bread wheats, and (iii) wheat plants grown in calcareous soils containing less than 0.2 mg kg-1 DTPA-extractable Zn significantly respond to soil Zn applications. The results also indicate that low levels of Zn in soils and plant materials (i.e. grains) could be a major contributing factor for widespread occurrence of Zn deficiency in children in Turkey, whose diets are dominated by cereal-based foods.  相似文献   

11.
以秋华柳为试验材料,采用水培试验方式,设置CK(0 mg·L-1 Cd2+)、T1(2 mg·L-1 Cd2+)、T2(10 mg·L-1Cd2+)、T3(20 mg·L-1Cd2+)、T4(50 mg·L-1Cd2+)5种镉处理浓度,通过对秋华柳根系活力,叶、韧皮部、木质部和根部的镉含量,以及Ca、Mg、Mn、Zn、Fe 5种常规金属元素含量的测定,研究了不同浓度镉胁迫下秋华柳根系活力及Ca、Mg、Mn、Zn、Fe 等金属元素含量的变化.结果表明:1)秋华柳根系活力随着镉处理浓度的增加而逐渐下降,当镉浓度≥10 mg·L-1时,根系活力与对照相比显著下降.2)随着镉处理浓度的增加,秋华柳叶中Fe的积累受到显著抑制;韧皮部Mg、Mn、Fe的积累受到显著抑制;木质部Ca、Mg、Mn、Zn、Fe 等5种常规金属元素的积累无显著性差异;根部5种常规金属元素的吸收和积累受到显著抑制,表现出镉对其他金属元素积累的拮抗作用.其中,50 mg·L-1的镉胁迫下,根部Zn的积累量降幅最大,受Cd的抑制最明显.3)各处理组Fe的转移系数与对照相比均无显著性差异;Ca、Mg、Mn、Zn的转移系数均高于对照,且在一定的镉处理水平上差异显著.4)镉胁迫下,秋华柳根部镉的积累量与Ca的积累量呈显著负相关,与其他4种常规金属元素的积累量呈极显著负相关,说明根部常规金属元素的变化可作为秋华柳受镉毒害程度的指示之一.  相似文献   

12.
The study describes the sorption of Cr, Cu, Mn and Zn by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum and heavy metals. The concentrations studied were 50, 49, 60 and 70 (mg L(-1)) for Cr, Cu, Mn and Zn, respectively. The solution pH and ionic strength were very important factors in the metal biosorption performance and the biosorption capacity of P. aeruginosa AT18 for Cr3+,Cu2+, Mn2+ and Zn2+. In aqueous solution, the biosorption increased with increasing pH in the range 5.46-7.72. The results obtained in the experimental assays show that P. aeruginosa AT18 has the capacity for biosorption of the metallic ions Cr3+, Cu2+ and Zn2+ in solutions, although its capacity for the sorption of manganese is low (22.39 mg Mn2+/g of biomass) in comparison to the Cr3+, Cu2+ and Zn2+ ions, as shown by the individual analyses. However, 20% of the manganese was removed from an initial concentration of 49.0 mg L(-1), with a Qm value similar to that obtained in solutions containing mixtures of Cr3+, Cu2+, Mn2+and Zn2+. The chromium level sorbed by P. aeruginosa AT18 biomass was higher than that for Cu, Mn and Zn, with 100% removal in the pH range 7.00-7.72 and a Qm of 121.90-200.00 mg of Cr3+/g of biomass. The removal of Cr, Cu and Zn is also a result of precipitation processes.  相似文献   

13.
Water use by willow (Salix viminalis L.) was studied in lysimeters containing clay landfill cap and sandy loam soils under different watering and amendment regimes. With plentiful water and amendments, seasonal ET increased annually and was highest in the sandy loam, increasing from 360 l plant(-1) in the establishment year to almost 1200 l plant(-1) in the third year. Seasonal ET was highly correlated with leaf area duration. Amendment of Oxford clay resulted in increases in plant leaf area, dry matter production and seasonal ET. Water stress reduced seasonal ET by 10-14% in the second year and 25-41% in the third. Water use efficiency was low for the un-amended clay treatment (1.4 g kg(-1)) but was similar in the amended clay (5.0 g kg(-1)) and sandy loam (4.9 g kg(-1)). This highlights the interdependence of water use and biomass production in willow.  相似文献   

14.
A newly developed rotating brush biofilm reactor was used for DCP, COD and toxicity removal from 2,4-dichlorophenol (DCP) containing synthetic wastewater at different feed COD, TCP concentrations and A/Q (biofilm surface area/feed flow rate) ratios. A Box-Wilson statistical experiment design was used by considering the feed DCP (50-500 mg l(-1)), COD (2000-6000 mg l(-1)) and A/Q ratio (73-293 m2 d m(-3)) as the independent variables while percent DCP, COD, and toxicity removals were the objective functions. The experimental data were correlated by a quadratic response function and the coefficients were determined by regression analysis. Percent DCP, COD and toxicity removals calculated from the response functions were in good agreement with the experimental data. DCP, COD and toxicity removals increased with increasing A/Q ratio and decreasing feed DCP concentrations. The optimum A/Q ratio resulting in the highest COD (90%), DCP (100%) and toxicity (100%) removals with the highest feed COD (6000 mg l(-1)) and DCP (500 mg l(-1)) contents was nearly 210 m2 d m(-3).  相似文献   

15.
Chen BY  Wu CH  Chang JS 《Bioresource technology》2006,97(15):1880-1886
The toxicity of Co(II), Mn(II), Cd(II), and Zn(II) for Pseudomonas aeruginosa PU21, a Hg(II)-hyperresistant strain containing the mercury resistance mer operon, was determined. The metal tolerance of PU21 was strongly influenced by environmental conditions (e.g., existing metal, medium composition). Dose-response analysis on chronic and acute toxicity (e.g., EC(20), median effective dose EC(50), and slope factor B) of divalent cobalt, manganese, cadmium, and zinc cations in LB medium amended with citric acid phosphate buffered saline (CAPBS) suggested a toxicity series of Co > Mn approximately Zn > Cd for EC(50). In contrast, excluding the likely precipitate of Zn(II), the toxicity ranking in phosphate-buffered saline (PBS)-amended LB medium was Co > Cd > Mn. The metal toxicity in PBS, irrespective of metals, was greater than that in CAPBS. This might be attributed to the presence of citric acid in CAPBS as a chelating ligand donating electrons to hold free metals (e.g., Cd(2+), Zn(2+) tetrahedral ML(4) complex). The toxicity assessment established viable operation ranges (ca. 相似文献   

16.
Pentachlorophenol (PCP) was once commonly used as a pesticide worldwide, and is now a toxic and recalcitrant environmental pollutant. To explore a practical approach in the remediation of PCP-contaminated soils in China, we evaluated the efficacy of a local willow (Salix × aureo-pendula CL “J1011”) on removing PCP and assessed the potential of a native earthworm (Metaphire guillelmi) and horseradish (Armoracia rusticana Gaerth), alone and in combination with willow, to enhance the efficiency of removing PCP from spiked field soils. Willow, horseradish, and earthworms alone significantly increased PCP removal from soil. After 45 days, only 47.2% of the PCP remained in the presence of willow alone; 68.4, 51.4, and 46.3% of the PCP remained with 50, 100, and 200 g horseradish m?2, respectively; and 41.1% of the PCP remained in the presence of earthworms. The removal of PCP from soils significantly increased with co-application of willow and horseradish (23.1% remaining) and especially with the co-application of willow and earthworms (2.2% remaining). Our results indicate that in terms of remediation efficiency, economic value, ecological benefits, and ease of use, a system consisting of this autochthonous willow and indigenous earthworms has great potential for the remediation of PCP-polluted soil in China.  相似文献   

17.
Abstract

In a greenhouse experiment, plant growth and copper (Cu) and zinc (Zn) uptake by four Salix cultivars grown in Cu and Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The cultivars displayed tolerance to heavily contaminated soils throughout the experiment. After uptake, total mean Cu concentrations in the leaves, shoots and roots in all cultivars and treatments ranged from 163 to 474?mg kg?1 and mean Zn concentrations ranged from 776 to 1823?mg kg?1. Lime and wood ash addition increased dry biomass growth (25–43%), chlorophyll fluorescence (Fv/Fm) values (3–6%), the translocation factor (TF) (15–60% for Cu; 10–25% for Zn), the bio-concentration factor (BCF) (40–85% for Cu; 70–120% for Zn), and metal uptake (55–70% for Cu; 50–65% for Zn) compared to unamended treatment across all cultivars. The results revealed that Salix cultivars have the potential to take up and accumulate significant amounts of Cu and Zn. Cultivar Klara (Salix viminalis × S. schwerinii × S. dasyclados) was found to be the most effective cultivar for phytoextraction since it displayed greater dry biomass production, Fv/Fm, TF, BCF values and uptake percentage rates of Cu and Zn compared to the other three cultivars. This study indicates that further research is needed to clarify the wider phytoextraction capabilities of different Salix cultivars.  相似文献   

18.
Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2) identify promising genotypes for potential use in future systems. We evaluated height, diameter, and volume after first year budset by testing 20 poplar clones and two willow clones. Unrooted cuttings, 20 cm long, were planted in randomized complete blocks at 0.91- x 0.91-m spacing at Gary, IN, USA (41.5 degrees N, 87.3 degrees W). Four commercial poplar clones (NM6, DN5, DN34, and DN182) were planted as 20- and 60-cm cuttings. Sixty-cm cuttings exhibited greater height and diameter than 20-cm cuttings; however, we recommend continued use and testing of different combinations of genotype and cutting length. We identified promising genotypes for potential use in future systems and we recommend allocating the majority of resources into commercial poplar clones, given their generalist growth performance. However, further utilization and selection of experimental clones is needed. Specific clones rather than genomic groups should be selected based on the geographic location and soil conditions of the site.  相似文献   

19.
Ginige MP  Wylie J  Plumb J 《Biofouling》2011,27(2):151-163
Although health risk due to discoloured water is minimal, such water continues to be the source of one of the major complaints received by most water utilities in Australia. Elevated levels of iron (Fe) and/or manganese (Mn) in bulk water are associated with discoloured water incidents. The accumulation of these two elements in distribution systems is believed to be one of the main causes for such elevated levels. An investigation into the contribution of pipe wall biofilms towards Fe and Mn deposition, and discoloured water events is reported in this study. Eight laboratory-scale reactors were operated to test four different conditions in duplicate. Four reactors were exposed to low Fe (0.05 mg l(-1)) and Mn (0.02 mg l(-1)) concentrations and the remaining four were exposed to a higher (0.3 and 0.4 mg l(-1) for Fe and Mn, respectively) concentration. Two of the four reactors which received low and high Fe and Mn concentrations were chlorinated (3.0 mg l(-1) of chlorine). The biological activity (measured in terms of ATP) on the glass rings in these reactors was very low (~1.5 ng cm(-2) ring). Higher concentrations of Fe and Mn in bulk water and active biofilms resulted in increased deposition of Fe and Mn on the glass rings. Moreover, with an increase in biological activity, an increase in Fe and Mn deposition was observed. The observations in the laboratory-scale experiments were in line with the results of field observations that were carried out using biofilm monitors. The field data additionally demonstrated the effect of seasons, where increased biofilm activities observed on pipe wall biofilms during late summer and early autumn were found to be associated with increased deposition of Fe and Mn. In contrast, during the cooler months, biofilm activities were a magnitude lower and the deposited metal concentrations were also significantly less (ie a drop of 68% for Fe and 86% for Mn). Based on the laboratory-scale investigations, detachment of pipe wall biofilms due to cell death or flow dynamics could release the entrapped Fe and Mn into the bulk water, which could lead to a discoloured water event. Hence, managing biofilm growth on drinking water pipelines should be considered by water utilities to minimize accumulation of Fe and Mn in distribution networks.  相似文献   

20.
Nutrient management recommendations for fruit crops lack the understanding of the efficiency of soil fertilisation with manganese (Mn) and zinc (Zn), which could substitute, in part, the traditional foliar applications. Fruit yield of trees in response to Zn and Mn supply via soil may be limited either by sorption reactions with soil colloids or low solubility of fertilisers. We investigated the effects of fertiliser sources and rates of Mn and Zn applied to soils with different sorption capacities on nutrient uptake, biochemical responses and biomass of Citrus. Two experiments were carried out with 2‐year‐old sweet orange trees that received applications of Mn or Zn. The first experiment evaluated the application of Mn fertilisers (MnCO3 and MnSO4) at three levels of the nutrient (0, 0.7 and 3.5 g plant?1 of Mn) in two types of soil (18.1% and 64.4% of clay, referred to as sandy loam and clay soils, respectively). The second experiment, likewise, evaluated Zn fertilisers (ZnO and ZnSO4) and nutrient levels (0, 1.0 and 5.0 g plant?1 of Zn). Application of Mn and Zn increased nutrient availability in the soils as well as leaf nutrient concentrations in the trees. The lowest rates, 0.7 g plant?1 of Mn and 1.0 g plant?1 of Zn, both as sulphate, were sufficient to supply these micronutrients to sufficient levels in leaves, flowers and fruits. Metal toxicity to plants occurred with higher doses of both nutrients and to a large extent in the sandy soil. In this case, protein bands lower than 25 kDa were observed as well a decrease on leaf chlorophyll content. In the clay soil, despite increased micronutrient concentrations in the plant, responses were less pronounced because of higher adsorption of metals in the soil. Superoxide dismutase (SOD, EC 1.15.1.1) isoenzyme activity was determined by non‐denaturing polyacrylamide gel electrophoresis (PAGE). The Cu/Zn‐SOD isoenzymes increased with increased Zn rates, but in contrast, when Mn was applied at the highest rate, the activity of Cu/Zn‐SODs decreased. The SOD activity pattern observed indicated increased production of superoxide and consequently an oxidative stress condition at the highest rates of Zn and Mn applied. The results demonstrated that the soil application of Mn and Zn can supply nutrient demands of orange trees, however the low solubility of fertilisers and the high sorption capacity of soils limit fertilisation efficiency. On the contrary, application of sulphate source in sandy soils may cause excess uptake of Mn and Zn and oxidative stress, which impairs the photosynthetic apparatus and consequently tree growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号