首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 896 毫秒
1.
The cytosol from lactating-rabbit mammary gland contains a medium-chain acyl-thioester hydrolase. This hydrolase terminates chain lengthening of the fatty acids synthesised by fatty acid synthetase so as to release C8:0 and C10:0 fatty acids which are characteristic of rabbit milk. The medium-chain hydrolase and the fatty acid synthetase present in this cytosol have been shown to be immunologically distinct. When fatty acid synthetase was purified from this cytosol it showed unexpected immunological reactivity towards antiserum raised to the medium-chain hydrolase. The precipitate formed was not due to fatty acid synthetase, but to medium-chain hydrolase contaminating the synthetase. However, the proportion of this medium-chain hydrolase which was recovered with the purified synthetase was too small to be detected by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and was too small to elicit an antibody response in sheep. Immunological techniques have shown that the medium-chain hydrolase appears in rabbit mammary gland between days 17 and 22 of pregnancy. This coincides with the onset of milk-fat synthesis. The medium-chain hydrolase could not be detected in the cytosol from lactating-rabbit liver.  相似文献   

2.
1. Purified cow mammary gland fatty acid synthetase synthesized long-chain unesterified and short-chain esterified fatty acids. 2. A direct relationship was observed between the amount of short-chain products synthesized and the concentration of acetyl-CoA in the incubation medium. 3. The short-chain products were identified as butyryl-CoA and hexanoyl-CoA. 4. Inhibition of the terminating thioester hydrolase of the fatty acid synthetase complex with phenylmethanesulphonyl fluoride did not inhibit the synthesis of short-chain products. 5. It is suggested that the synthesis of short-chain fatty acids involves the reverse of the 'loading' reaction.  相似文献   

3.
The fatty acid composition of Brevibacterium ammoniagenes was affected by the temperature of growth. As the growth temperature was lowered, the proportion of unsaturated fatty acids increased. The fatty acid synthetase obtained from B. ammoniagense produced oleic acid as well as saturated fatty acids. The ratio of unsaturated to saturated fatty acids synthesized by this enzyme in vitro was dependent on the temperature of the enzyme reaction but not on the growth temperature of B. ammoniagenes from which the enzyme was prepared. These results suggest that the changes of composition in cellular fatty acids reflect the temperature dependence of the fatty acid synthetase.  相似文献   

4.
S Smith  D Pasco    S Nandi 《The Biochemical journal》1983,212(1):155-159
Epithelial cells were isolated from the undifferentiated mammary glands of mature virgin female rats, and their lipogenic characteristics were studied. These cells synthesized predominantly medium-chain fatty acids, albeit at a low rate. In contrast, whole tissue from mammary glands of virgin rats synthesized predominantly long-chain fatty acids at a relatively higher rate, indicating that the lipogenic activity is dominated by the adipocyte component of the gland. Enzyme assays revealed that thioesterase II, the enzyme which regulates production of medium-chain fatty acids by the fatty acid synthetase, was present at a high activity in the undifferentiated mammary epithelial cells of virgin rats. Immunohistochemical studies confirmed this observation and showed that the regulatory enzyme was present exclusively in the epithelial cells lining the alveolar and ductal elements of the undifferentiated gland. This study demonstrates that the potential to elaborate tissue-specific medium-chain fatty acids is already expressed in the undifferentiated tissue of virgin rats and is not acquired as a result of the differentiation associated with the lactogenic phase of development. In this species mammary epithelial cells apparently synthesize predominantly medium-chain fatty acids at all stages of development, and only the overall rate of synthesis is increased on induction of the fatty acid synthetase during lactogenesis.  相似文献   

5.
The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue.  相似文献   

6.
Microbial fatty acids are an attractive source of precursors for a variety of renewable commodity chemicals such as alkanes, alcohols, and biofuels. Rerouting lipid biosynthesis into free fatty acid production can be toxic, however, due to alterations of membrane lipid composition. Here we find that membrane lipid composition can be altered by the direct incorporation of medium-chain fatty acids into lipids via the Aas pathway in cells expressing the medium-chain thioesterase from Umbellularia californica (BTE). We find that deletion of the aas gene and sequestering exported fatty acids reduces medium-chain fatty acid toxicity, partially restores normal lipid composition, and improves medium-chain fatty acid yields.  相似文献   

7.
Fatty acid synthetase from goat mammary gland was subjected to limited proteolysis by trypsin and elastase. Both proteolytic enzymes selectively cleaved the chain-terminating thioester hydrolase component from the enzyme complex, leaving all other partial activities intact in the core peptides. Trypsin, but not elastase, caused extensive degradation of the released thioester hydrolase. The released thioester hydrolase could be purified to homogeneity by gel filtration. The molecular weight was estimated as 29 000 and the enzyme showed only significant hydrolytic activity toward long-chain acyl-CoA esters. The core peptides retained the ability to synthesize medium-chain acyl-CoA esters in the presence of 2,6-di-O-methyl-alpha-cyclodextrin. The results conclusively show that the terminating thioester hydrolase of goat mammary-gland fatty acid synthetase is not involved in termination of medium-chain-length fatty acid synthesis by this enzyme.  相似文献   

8.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

9.
A new assay method for fatty acid synthetase using mass fragmentography was described. [2-13C]Malonyl-CoA was chemically synthesized from [2-13C]malonic acid and used as a substrate. The newly synthesized fatty acids were quantitated with a GC-MS instrument after methyl esterification. Monitoring of molecular ions of the newly synthesized fatty acids enabled us to determine the absolute amounts with heptadecanoic acid as an internal standard. Multiple products (14 : 0, 16 : 0, and 18 : 0) were measured individually. Using this technique, we obtained information about production profiles such as that of chain length against incubation temperature and about malonyl-CoA decarboxylation activity in enzyme preparations, and we also confirmed the presence of malonyl-CoA decarboxylation activity even in purified fatty acid synthetase from guinea pig Harderian gland. Compared with the conventional assay methods (spectrophotometric and radioisotopic), this method was more reliable and useful.  相似文献   

10.
The expression of a plant (Umbellularia californica) medium-chain acyl-acyl carrier protein (ACP) thioesterase (BTE) cDNA in Escherichia coli results in a very high level of extractable medium-chain-specific hydrolytic activity but causes only a minor accumulation of medium-chain fatty acids. BTE's full impact on the bacterial fatty acid synthase is apparent only after expression in a strain deficient in fatty acid degradation, in which BTE increases the total fatty acid output of the bacterial cultures fourfold. Laurate (12:0), normally a minor fatty acid component of E. coli, becomes predominant, is secreted into the medium, and can accumulate to a level comparable to the total dry weight of the bacteria. Also, large quantities of 12:1, 14:0, and 14:1 are made. At the end of exponential growth, the pathway of saturated fatty acids is almost 100% diverted by BTE to the production of free medium-chain fatty acids, starving the cells for saturated acyl-ACP substrates for lipid biosynthesis. This results in drastic changes in membrane lipid composition from predominantly 16:0 to 18:1. The continued hydrolysis of medium-chain ACPs by the BTE causes the bacterial fatty acid synthase to produce fatty acids even when membrane production has ceased in stationary phase, which shows that the fatty acid synthesis rate can be uncoupled from phospholipid biosynthesis and suggests that acyl-ACP intermediates might normally act as feedback inhibitors for fatty acid synthase. As the fatty acid synthesis is increasingly diverted to medium chains with the onset of stationary phase, the rate of C12 production increases relative to C14 production. This observation is consistent with activity of the BTE on free acyl-ACP pools, as opposed to its interaction with fatty acid synthase-bound substrates.  相似文献   

11.
Curtobacterium pusillum contains 11-cyclohexylundecanoic acid as a major component of cellular fatty acids. A trace amount of 13-cyclohexyltridecanoic acid is also present. Fatty acids other than omega-cyclohexyl fatty acids present are 13-methyltetradecanoic, 12-methyltetradecanoic, n-pentadecanoic, 14-methylpentadecanoic, 13-methylpentadecanoic, n-hexadecanoic, 15-methylhexadecanoic, 14-methylhexadecanoic, and n-heptadecanoic acids. The fatty acid synthetase system of this bacterium was studied. Various 14C-labeled precursors were added to the growth medium and the incorporation of radioactivity into cellular fatty acids was analyzed. Sodium [14C]acetate and [14C]glucose were incorporated into almost all species of cellular fatty acids, the incorporation into 11-cyclohexylundecanoic acid being predominant. [14C]Isoleucine was incorporated into 12-methyltetradecanoic and 14-methylhexadecanoic acids: [14C]leucine into 13-methyltetradecanoic and 15-methylhexadecanoic acids; and [14C]valine into 14-methylpentadecanoic acid. [14C]-Shikimic acid was incorporated almost exclusively into omega-cyclohexyl fatty acids. The fatty acid synthetase activity of the crude enzyme preparation of C. pusillum was reconstituted on the addition of acyl carrier protein. This synthetase system required NADPH and preferentially utilized cyclohexanecarbonyl-CoA as a primer. The system was also able to use branched- and straight-chain acyl-CoAs with 4 to 6 carbon atoms effectively as primers but was unable to use acetyl-CoA. However, if acetyl acyl carrier protein was used as the priming substrate, the system produced straight-chain fatty acids. The results imply that the specificity of the initial acyl-CoA:acyl carrier protein acyltransferase dictates the structure of fatty acids synthesized and that the enzymes catalyzing the subsequent chain-elongation reactions do not have the same specificity restriction.  相似文献   

12.
Bovine liver was shown to contain a hitherto undescribed medium-chain acyl-CoA-binding protein. The protein co-purifies with fatty-acid-binding proteins, but was, unlike these proteins, unable to bind fatty acids. The protein induced synthesis of medium-chain acyl-CoA esters on incubation with goat mammary-gland fatty acid synthetase. The possible function of the protein is discussed.  相似文献   

13.
14.
When propionyl-CoA was substituted for either acetyl-CoA or butyryl-CoA in the presence of [14C]malonyl-CoA and NADPH, the pure human liver fatty acids synthetase complex synthesized only straight-chain, saturated, 15- and 17-carbon radioactive fatty acids. At optimal concentrations, propionyl-CoA was a better primer of fatty acid synthesis than acetyl-CoA. Methylmalonyl-CoA inhibited the synthetase competitively with respect to malonyl-CoA. The Ki was calculated to be 8.4 muM. These findings provide an in vitro model and offer a direct explanation at the molecular level for some of the abnormal manifestations observed in diseases characterized by increased cellular concentrations of propionyl-CoA and methylmalonyl-CoA.  相似文献   

15.
Pigeon liver fatty acid synthetase proteins (apo- and holo-forms) have been synthesized in a cell-free system reconstituted from polysomes and a soluble enzyme fraction. Identification of the cell-free synthesized products as fatty acid synthetase was achieved by affinity chromatography, by immuno-precipitation and by the simultaneous conversion of both the authentic carrier protein and the in vitro synthesized products from the holo- to the apo-form of the synthetase. The reverse conversion was also effected.  相似文献   

16.
Fatty acyl-CoA synthetase (FACS, fatty acid:CoA ligase, AMP-forming, EC ) catalyzes the esterification of fatty acids to CoA thioesters for further metabolism and is hypothesized to play a pivotal role in the coupled transport and activation of exogenous long-chain fatty acids in Escherichia coli. Previous work on the bacterial enzyme identified a highly conserved region (FACS signature motif) common to long- and medium-chain acyl-CoA synthetases, which appears to contribute to the fatty acid binding pocket. In an effort to further define the fatty acid-binding domain within this enzyme, we employed the affinity labeled long-chain fatty acid [(3)H]9-p-azidophenoxy nonanoic acid (APNA) to specifically modify the E. coli FACS. [(3)H]APNA labeling of the purified enzyme was saturable and specific for long-chain fatty acids as shown by the inhibition of modification with increasing concentrations of palmitate. The site of APNA modification was identified by digestion of [(3)H]APNA cross-linked FACS with trypsin and separation and purification of the resultant peptides using reverse phase high performance liquid chromatography. One specific (3)H-labeled peptide, T33, was identified and following purification subjected to NH(2)-terminal sequence analysis. This approach yielded the peptide sequence PDATDEIIK, which corresponded to residues 422 to 430 of FACS. This peptide is immediately adjacent to the region of the enzyme that contains the FACS signature motif (residues 431-455). This work represents the first direct identification of the carboxyl-containing substrate-binding domain within the adenylate-forming family of enzymes. The structural model for the E. coli FACS predicts this motif lies within a cleft separating two distinct domains of the enzyme and is adjacent to a region that contains the AMP/ATP signature motif, which together are likely to represent the catalytic core of the enzyme.  相似文献   

17.
Fatty acid beta-oxidation is a key process in mammalian lipid catabolism. Disturbance of this process results in severe clinical symptoms, including dysfunction of the liver, a major beta-oxidizing tissue. For a thorough understanding of this process, a comprehensive analysis of involved fatty acid and acyl-carnitine intermediates is desired, but capable methods are lacking. Here, we introduce oxaalkyne and alkyne fatty acids as novel tracers to study the beta-oxidation of long- and medium-chain fatty acids in liver lysates and primary hepatocytes. Combining these new tracer tools with highly sensitive chromatography and mass spectrometry analyses, this study confirms differences in metabolic handling of fatty acids of different chain length. Unlike longer chains, we found that medium-chain fatty acids that were activated inside or outside of mitochondria by different acyl-CoA synthetases could enter mitochondria in the form of free fatty acids or as carnitine esters. Upon mitochondrial beta-oxidation, shortened acyl-carnitine metabolites were then produced and released from mitochondria. In addition, we show that hepatocytes ultimately also secreted these shortened acyl chains into their surroundings. Furthermore, when mitochondrial beta-oxidation was hindered, we show that peroxisomal beta-oxidation likely acts as a salvage pathway, thereby maintaining the levels of shortened fatty acid secretion. Taken together, we conclude that this new method based on oxaalkyne and alkyne fatty acids allows for metabolic tracing of the beta-oxidation pathway in tissue lysate and in living cells with unique coverage of metabolic intermediates and at unprecedented detail.  相似文献   

18.
Branched long-chain fatty acids of the iso and anteiso series are synthesized in many bacteria from the branched-chain alpha-keto acids of valine, leucine, and isoleucine after their decarboxylation followed by chain elongation. Two distinct branched-chain alpha-keto acid (BCKA) and pyruvate decarboxylases, which are considered to be responsible for primer synthesis, were detected in, and purified in homogenous form from Bacillus subtilis 168 strain by procedures including ammonium sulfate fractionation and chromatography on ion exchange, reversed-phase, and gel absorption columns. The chemical and catalytic properties of the two decarboxylases were studied in detail. The removal of BCKA decarboxylase, using chromatographic fractionation, from the fatty acid synthetase significantly reduced its activity. The synthetase activity was completely lost upon immunoprecipitation of the decarboxylase. The removal of pyruvate decarboxylase by the above two methods, however, did not affect any activity of the fatty acid synthetase. Thus, BCKA decarboxylase, but not pyruvate decarboxylase, is essential for the synthesis of branched-chain fatty acids. The very high affinity of BCKA decarboxylase toward branched-chain alpha-keto acids is responsible for its function in fatty acid synthesis.  相似文献   

19.
G M Patton  J M Lowenstein 《Biochemistry》1979,18(14):3186-3188
Fatty acid synthesis by perfused livers of rat is measured by using D2O as tracer. The newly synthesized, deuterium-labeled fatty acids are separated from unlabeled fatty acids by gas chromatography using glass capillary columns. The areas of the deuterium-labeled peaks are proportional to the amounts of fatty acids synthesized. The absolute amounts of the individual fatty acids synthesized are obtained by use of an internal standard. The number of deuterium atoms incorporated, as determined by mass spectrometry, is proportional to the D2O concentration of the perfusate, except at very high concentrations of D2O. The relative retention times of the newly synthesized, deuterium-labeled fatty acids are proportional to their deuterium content.  相似文献   

20.
Fatty acid synthetase, partially purified by gel filtration with Sepharose 4B from goose liver, showed the same relative rate of incorporation of methylmalonyl-CoA (compared to malonyl-CoA) as that observed with the purified fatty acid synthetase from the uropygial gland. In the presence of acetyl-CoA, methylmalonyl-CoA was incorporated mainly into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8,10-pentamethyl-dodecanoic acid by the enzyme from both sources. Methylmalonyl-CoA was a competitive inhibitor with respect to malonyl-CoA for the enzyme from the gland just as previously observed for fatty acid synthetase from other animals. Furthermore, rabbit antiserum prepared against the gland enzyme cross-reacted with the liver enzyme, and Ouchterlony double-diffusion analyses showed complete fusion of the immunoprecipitant lines. The antiserum inhibited both the synthesis of n-fatty acids and branched fatty acids catalyzed by the synthetase from both liver and the uropygial gland. These results suggest that the synthetases from the two tissues are identical and that branched and n-fatty acids are synthesized by the same enzyme. Immunological examination of the 105,000g supernatant prepared from a variety of organs from the goose showed that only the uropygial gland contained a protein which cross-reacted with the antiserum prepared against malonyl-CoA decarboxylase purified from the gland. Thus, it is concluded that the reason for the synthesis of multimethyl-branched fatty acids by the fatty acid synthetase in the gland is that in this organ the tissue-specific and substrate-specific decarboxylase makes only methylmalonyl-CoA available to the synthetase. Fatty acid synthetase, partially purified from the mammary gland and the liver of rats, also catalyzed incorporation of [methyl-14C]methylmalonyl-CoA into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8-tetramethylundecanoic acid with acetyl-CoA and propionyl-CoA, respectively, as the primers. Evidence is also presented that fatty acids containing straight and branched regions can be generated by the fatty acid synthetase from the rat and goose, from methylmalonyl-CoA in the presence of malonyl-CoA or other precursors of n-fatty acids. These results provide support for the hypothesis that, under the pathological conditions which result in accumulation of methylmalonyl-CoA, abnormal branched acids can be generated by the fatty acid synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号