首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The thermophilic bacterium Thermus aquaticus is a well-known source of Taq polymerase. Here, we studied the structure and dynamics of the T. aquaticus cold-shock protein (Ta-Csp) to better understand its thermostability using NMR spectroscopy. We found that Ta-Csp has a five-stranded β-barrel structure with five salt bridges which are important for more rigid structure and a higher melting temperature (76 °C) of Ta-Csp compared to mesophilic and psychrophilic Csps. Microsecond to millisecond time scale exchange processes occur only at the β1–β2 surface region of the nucleic acid binding site with an average conformational exchange rate constant of 674 s−1. The results imply that thermophilic Ta-Csp has a more rigid structure and may not need high structural flexibility to accommodate nucleic acids upon cold shock compared to its mesophile and psychrophile counterparts.  相似文献   

6.
Specificity of DNA binding and dimerization by CspE from Escherichia coli   总被引:1,自引:0,他引:1  
The CspE protein from Escherichia coli K12 is a single-stranded nucleic acid-binding protein that plays a role in chromosome condensation in vivo. We report here that CspE binds to single-stranded DNA containing 6 or more contiguous dT residues with high affinity (K(D) < 30 nM). The interactions are predominantly through base-specific contacts. When an oligonucleotide contains fewer than 6 contiguous dT residues, the CspE interactions with single-stranded DNA are primarily electrostatic. The minimal length of single-stranded DNA to which CspE binds in a salt-resistant manner is eight nucleotides. We also show that CspE exists as a dimer in solution. We present a possible mechanism to explain the role of CspE in chromosome condensation in vivo by CspE binding to distant DNA regions in the chromosome and dimerizing, thereby condensing the intervening DNA.  相似文献   

7.
8.
Escherichia coli CspA is a member of the cold shock protein family. All cold shock proteins studied to date fold rapidly by an apparent two-state mechanism. CspA contains an unusual cluster of aromatic amino acids on its surface that is necessary for nucleic acid binding and also provides stability to CspA (Hillier et al., 1998). To elucidate the role this aromatic cluster plays in the determining the folding rate and pathway of CspA, we have studied the folding kinetics of mutants containing either leucine or serine substituted for Phe 18, Phe20, and/or Phe31. The leucine substitutions are found to accelerate folding and the serine substitutions to decelerate folding. Because these residues exert effects on the free energy of the folding transition state, they may be necessary for nucleating folding. They are not responsible, however, for the very compact, native-like transition state ensemble seen in the cold shock proteins, as the refolding rates of the mutants all show a similar, weak dependence of unfolding rate on denaturant concentration. Using mutant cycle analysis, we show that there is energetic coupling among the three residues between the unfolded and transition states, suggesting that the cooperative nature of these interactions helps to determine the unfolding rate. Overall, our results suggest that separate evolutionary pressures can act simultaneously on the same group of residues to maintain function, stability, and folding rate.  相似文献   

9.
10.
Proteome analysis of Enterobacter ludwigii PAS1 provide a powerful set of tool to study the cold shock proteins along with that combination of bioinformatics is useful for interpretation of comparative results from many species. There is a considerable interest in the use of psychrotrophic bacteria for nitrogen fixation, especially at hilly regions, thus better understanding of cold adaptation mechanisms too. The psychrotrophic E. ludwigii PAS1 grown at 30 and 4 °C, isolated from Himalaya soil was undertaken for proteomic responses during optimal and cold shock conditions. Comparative proteomic analyses using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF MS revealed the presence of Cold shock protein E (CspE). Three-dimensional structure of CspE of E. ludwigii PAS1 divulge the presence of five antiparallel β-sheets forming a β-barrel structure with surface exposed aromatic and basic residues that were responsible for nucleic acid binding and also reveals the presence of highly conserved nucleic acid-binding motifs RNP1 and RNP2 in Csp family.  相似文献   

11.
Protein engineering of the cholera toxin A1 subunit (CTA1) fused to a dimer of the Ig-binding D-region of Staphylococcus aureus protein A (DD) was employed to investigate the effect of specific amino acid changes on solubility, stability, enzymatic activity and capacity to act as an adjuvant in vivo. A series of CTA1-DD analogues were selected by a rational modeling approach, in which surface-exposed hydrophobic amino acids of CTA1 were exchanged for hydrophilic counterparts modeled for best structural fit. Of six different mutants initially produced, two analogues, CTA1Phe132Ser-DD and CTA1Pro185Gln-DD, were demonstrated to have 50 and 70% increased solubility, respectively, at neutral pH. The double mutant CTA1Phe132Ser/Pro185Gln-DD was at least threefold more soluble, demonstrating an additive effect of the two mutations. Only the Phe132Ser analogue retained full biological activity and stability compared with the native CTA1-DD fusion protein. Two mutants, Pro185Gln and Phe31His mutations, exhibited unaltered ADP-ribosyltransferase activity in vitro, but demonstrated markedly reduced adjuvant function. Since the Pro185 and Phe31 amino acids are located in close vicinity on the distal side of the molecule relative to the enzymatically active cleft, it is conceivable that this region is involved in mediating a biological function, separate from the enzymatic activity but intrinsic to the adjuvant activity of CTA1.  相似文献   

12.
Cold shock proteins (Csps) are assumed to play a central role in the regulation of gene expression under cold shock conditions. Acting as single-stranded nucleic acid-binding proteins, they trigger the translation process and are therefore involved in the compensation of the influence of low temperatures (cold shock) upon the cell metabolism. However, it is unknown so far how Csps are switched on and off as a function of temperature. The aim of the present study is the study of possible structural changes responsible for this switching process. (1)H-(15)N HSQC spectra recorded at different temperatures and chemical-shift analysis have indicated subtle conformational changes for the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima (TmCsp) when the temperature is elevated from 303 K to its physiological temperature (343 K). The three-dimensional structure of TmCsp was determined by nuclear magnetic resonance (NMR) spectroscopy at 343 K to obtain quantitative information concerning these structural changes. By use of residual dipolar couplings, the loss of NOE information at high temperature could be compensated successfully. Most pronounced conformational changes compared with room-temperature conditions are observed for amino acid residues closely neighbored to two characteristic beta-bulges and a well-defined loop region of the protein. Because the residues shown to be responsible for the interaction of TmCsp with single-stranded nucleic acids can almost exclusively be found within these regions, nucleic acid-binding activity might be down-regulated with increasing temperature by the described conformational changes.  相似文献   

13.
14.
In the cold-shock protein CspB from Bacillus subtilis three exposed Phe residues (F15, F17, and F27) are essential for its function in binding to single-stranded nucleic acids. Usually, the hydrophobic Phe side chains are buried in folded proteins. We asked here whether the exposition of the essential Phe residues could be a cause for the very low conformational stability of CspB. Urea-induced and heat-induced equilibrium unfolding transitions were measured for three mutants of CspB, where Phe 15, Phe 17, and Phe 27 were individually replaced by alanine. Unexpectedly, all three mutations strongly destabilized CspB. The aromatic side chains of Phe 15, Phe 17, and Phe 27 in the active site are thus important for both binding to nucleic acids and conformational stability. There is no compromise between function and stability in the active site. Model calculations indicate that, although they are partially exposed to solvent, all three Phe residues nevertheless lose accessible surface upon folding, and this should favor the native state. A different result is obtained with the F38A variant. Phe 38 is hyperexposed in native CspB, and its substitution by Ala is in fact stabilizing. Proteins 30:401–406, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
16.
The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization (FISH) procedure, the melting temperature is used as a reference, together with corrections for certain compounds that are used during FISH. However, the quantitative relation between melting and experimental FISH temperatures is poorly described. In this review, various models used to predict the melting temperature for rRNA targets, for DNA oligonucleotides and for nucleic acid mimics (chemically modified oligonucleotides), will be addressed in detail, together with a critical assessment of how this information should be used in FISH.  相似文献   

17.
Protective antigen (PA) is the main component of all the vaccines against anthrax. The currently available vaccines have traces of other proteins that contribute to its reactogenicity. Thus, purified PA is recommended for human vaccination. PA loses its biological activity within 48h at 37 degrees C and its thermolability has been a cause of concern as accidental exposure to higher temperatures during transportation or storage could decrease its efficacy. In the present study, we have used protein engineering approach to increase the thermostability of PA by mutating amino acid residues on the surface as well as the interior of the protein. After screening several mutants, the mutants Gln277Ala and Phe554Ala have been found to be more thermostable than the wild-type PA. Gln277Ala retains approximately 45% and Phe554Ala retains approximately 90% activity, even after incubation at 37 degrees C for 48h while in the same period wild-type PA loses its biological activity completely. It is the first report of increasing thermostability of PA using site-directed mutagenesis. Generation of such mutants could pave the way for better anthrax vaccines with longer shelf life.  相似文献   

18.
19.
Exposure to low temperatures induces the biosynthesis of specific sets of proteins, including cold shock proteins (Csps). Since many of the specific functions of pychrophilic Csps are unknown, the roles of Csps from an Arctic bacterium, Polaribacter irgensii KOPRI 22228, were examined. The genes encoding CspA and CspC of P. irgensii were cloned in this study. Sequence analysis showed that these proteins have cold shock domains containing two RNA-binding motifs, RNP1 and RNP2. Both proteins bound oligo(dT)-cellulose resins, suggesting single-stranded nucleic acid-binding activity. When the P. irgensii Csps were overexpressed in Escherichia coli, the cold-resistance of the host was increased by more than five-fold. The P. irgensii Csps also rescued a cold-sensitive E. coli csp-quadruple deletion strain, BX04, at low temperatures. These results suggest that Csps from P. irgensii play a role in survival in polar environments.  相似文献   

20.
Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02–1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5′-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号