首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In normalizing two-channel expression arrays, the ANOVA approach explicitly incorporates the experimental design in its model, and the MA plot-based approach accounts for intensity-dependent biases. However, both approaches can lead to inaccurate normalization in fairly common scenarios. We propose a method called efficient Common Array Dye Swap (eCADS) for normalizing two-channel microarrays that accounts for both experimental design and intensity-dependent biases. Under reasonable experimental designs, eCADS preserves differential expression relationships and requires only a single array per sample pair.  相似文献   

2.
Characterizing dye bias in microarray experiments   总被引:3,自引:0,他引:3  
MOTIVATION: Spot intensity serves as a proxy for gene expression in dual-label microarray experiments. Dye bias is defined as an intensity difference between samples labeled with different dyes attributable to the dyes instead of the gene expression in the samples. Dye bias that is not removed by array normalization can introduce bias into comparisons between samples of interest. But if the bias is consistent across samples for the same gene, it can be corrected by proper experimental design and analysis. If the dye bias is not consistent across samples for the same gene, but is different for different samples, then removing the bias becomes more problematic, perhaps indicating a technical limitation to the ability of fluorescent signals to accurately represent gene expression. Thus, it is important to characterize dye bias to determine: (1) whether it will be removed for all genes by array normalization, (2) whether it will not be removed by normalization but can be removed by proper experimental design and analysis and (3) whether dye bias correction is more problematic than either of these and is not easily removable. RESULTS: We analyzed two large (each >27 arrays) tissue culture experiments with extensive dye swap arrays to better characterize dye bias. Indirect, amino-allyl labeling was used in both experiments. We found that post-normalization dye bias that is consistent across samples does appear to exist for many genes, and that controlling and correcting for this type of dye bias in design and analysis is advisable. The extent of this type of dye bias remained unchanged under a wide range of normalization methods (median-centering, various loess normalizations) and statistical analysis techniques (parametric, rank based, permutation based, etc.). We also found dye bias related to the individual samples for a much smaller subset of genes. But these sample-specific dye biases appeared to have minimal impact on estimated gene-expression differences between the cell lines.  相似文献   

3.
Evaluation of the gene-specific dye bias in cDNA microarray experiments   总被引:2,自引:0,他引:2  
MOTIVATION: In cDNA microarray experiments all samples are labeled with either Cy3 or Cy5. Systematic and gene-specific dye bias effects have been observed in dual-color experiments. In contrast to systematic effects which can be corrected by a normalization method, the gene-specific dye bias is not completely suppressed and may alter the conclusions about the differentially expressed genes. METHODS: The gene-specific dye bias is taken into account using an analysis of variance model. We propose an index, named label bias index, to measure the gene-specific dye bias. It requires at least two self-self hybridization cDNA microarrays. RESULTS: After lowess normalization we have found that the gene-specific dye bias is the major source of experimental variability between replicates. The ratio (R/G) may exceed 2. As a consequence false positive genes may be found in direct comparison without dye-swap. The stability of this artifact and its consequences on gene variance and on direct or indirect comparisons are addressed. AVAILABILITY: http://www.inapg.inra.fr/ens_rech/mathinfo/recherche/mathematique  相似文献   

4.
MOTIVATION: An important underlying assumption of any experiment is that the experimental subjects are similar across levels of the treatment variable, so that changes in the response variable can be attributed to exposure to the treatment under study. This assumption is often not valid in the analysis of a microarray experiment due to systematic biases in the measured expression levels related to experimental factors such as spot location (often referred to as a print-tip effect), arrays, dyes, and various interactions of these effects. Thus, normalization is a critical initial step in the analysis of a microarray experiment, where the objective is to balance the individual signal intensity levels across the experimental factors, while maintaining the effect due to the treatment under investigation. RESULTS: Various normalization strategies have been developed including log-median centering, analysis of variance modeling, and local regression smoothing methods for removing linear and/or intensity-dependent systematic effects in two-channel microarray experiments. We describe a method that incorporates many of these into a single strategy, referred to as two-channel fastlo, and is derived from a normalization procedure that was developed for single-channel arrays. The proposed normalization procedure is applied to a two-channel dose-response experiment.  相似文献   

5.
Normalization is critical for removing systematic variation from microarray data. For two-color microarray platforms, intensity-dependent lowess normalization is commonly used to correct relative gene expression values for biases. Here we outline a normalization method for use when the assumptions of lowess normalization fail. Specifically, this can occur when specialized boutique arrays are constructed that contain a subset of genes selected to test particular biological functions.  相似文献   

6.
MOTIVATION: Microarray experiments are affected by numerous sources of non-biological variation that contribute systematic bias to the resulting data. In a dual-label (two-color) cDNA or long-oligonucleotide microarray, these systematic biases are often manifested as an imbalance of measured fluorescent intensities corresponding to Sample A versus those corresponding to Sample B. Systematic biases also affect between-slide comparisons. Making effective corrections for these systematic biases is a requisite for detecting the underlying biological variation between samples. Effective data normalization is therefore an essential step in the confident identification of biologically relevant differences in gene expression profiles. Several normalization methods for the correction of systemic bias have been described. While many of these methods have addressed intensity-dependent bias, few have addressed both intensity-dependent and spatiality-dependent bias. RESULTS: We present a neural network-based normalization method for correcting the intensity- and spatiality-dependent bias in cDNA microarray datasets. In this normalization method, the dependence of the log-intensity ratio (M) on the average log-intensity (A) as well as on the spatial coordinates (X,Y) of spots is approximated with a feed-forward neural network function. Resistance to outliers is provided by assigning weights to each spot based on how distant their M values is from the median over the spots whose A values are similar, as well as by using pseudospatial coordinates instead of spot row and column indices. A comparison of the robust neural network method with other published methods demonstrates its potential in reducing both intensity-dependent bias and spatial-dependent bias, which translates to more reliable identification of truly regulated genes.  相似文献   

7.
A statistical model is proposed for the analysis of errors in microarray experiments and is employed in the analysis and development of a combined normalisation regime. Through analysis of the model and two-dye microarray data sets, this study found the following. The systematic error introduced by microarray experiments mainly involves spot intensity-dependent, feature-specific and spot position-dependent contributions. It is difficult to remove all these errors effectively without a suitable combined normalisation operation. Adaptive normalisation using a suitable regression technique is more effective in removing spot intensity-related dye bias than self-normalisation, while regional normalisation (block normalisation) is an effective way to correct spot position-dependent errors. However, dye-flip replicates are necessary to remove feature-specific errors, and also allow the analyst to identify the experimentally introduced dye bias contained in non-self-self data sets. In this case, the bias present in the data sets may include both experimentally introduced dye bias and the biological difference between two samples. Self-normalisation is capable of removing dye bias without identifying the nature of that bias. The performance of adaptive normalisation, on the other hand, depends on its ability to correctly identify the dye bias. If adaptive normalisation is combined with an effective dye bias identification method then there is no systematic difference between the outcomes of the two methods.  相似文献   

8.
Statistical design of reverse dye microarrays   总被引:7,自引:0,他引:7  
MOTIVATION: In cDNA microarray experiments all samples are labelled with either Cy3 dye or Cy5 dye. Certain genes exhibit dye bias-a tendency to bind more efficiently to one of the dyes. The common reference design avoids the problem of dye bias by running all arrays 'forward', so that the samples being compared are always labelled with the same dye. But comparison of samples labelled with different dyes is sometimes of interest. In these situations, it is necessary to run some arrays 'reverse'-with the dye labelling reversed-in order to correct for the dye bias. The design of these experiments will impact one's ability to identify genes that are differentially expressed in different tissues or conditions. We address the design issue of how many specimens are needed, how many forward and reverse labelled arrays to perform, and how to optimally assign Cy3 and Cy5 labels to the specimens. RESULTS: We consider three types of experiments for which some reverse labelling is needed: paired samples, samples from two predefined groups, and reference design data when comparison with the reference is of interest. We present simple probability models for the data, derive optimal estimators for relative gene expression, and compare the efficiency of the estimators for a range of designs. In each case, we present the optimal design and sample size formulas. We show that reverse labelling of individual arrays is generally not required.  相似文献   

9.
Cheng C  Li LM 《Nucleic acids research》2005,33(17):5565-5573
From microarray measurement, we seek differentiation of mRNA expressions among different biological samples. However, each array has a ‘block effect’ due to uncontrolled variation. The statistical treatment of reducing the block effect is usually referred to as normalization. Our perspective is to find a transformation that matches the distributions of hybridization levels of those probes corresponding to undifferentiated genes between arrays. We address two important issues. First, array-specific spatial patterns exist due to uneven hybridization and measurement process. Second, in some cases a substantially large portion of genes are differentially expressed between a target and a reference array. For the purpose of normalization we need to identify a subset that exclude those probes corresponding to differentially expressed genes and abnormal probes due to experimental variation. Least trimmed squares (LTS) is a natural choice to achieve this goal. Substantial differentiation is protected in LTS by setting an appropriate trimming fraction. To take into account any spatial pattern of hybridization, we divide each array into sub-arrays and normalize probe intensities within each sub-array. We illustrate the problem and solution through an Affymetrix spike-in dataset with defined perturbation and a dataset of primate brain expression.  相似文献   

10.
Microarray scanner calibration curves: characteristics and implications   总被引:1,自引:0,他引:1  

Background

Microarray-based measurement of mRNA abundance assumes a linear relationship between the fluorescence intensity and the dye concentration. In reality, however, the calibration curve can be nonlinear.

Results

By scanning a microarray scanner calibration slide containing known concentrations of fluorescent dyes under 18 PMT gains, we were able to evaluate the differences in calibration characteristics of Cy5 and Cy3. First, the calibration curve for the same dye under the same PMT gain is nonlinear at both the high and low intensity ends. Second, the degree of nonlinearity of the calibration curve depends on the PMT gain. Third, the two PMTs (for Cy5 and Cy3) behave differently even under the same gain. Fourth, the background intensity for the Cy3 channel is higher than that for the Cy5 channel. The impact of such characteristics on the accuracy and reproducibility of measured mRNA abundance and the calculated ratios was demonstrated. Combined with simulation results, we provided explanations to the existence of ratio underestimation, intensity-dependence of ratio bias, and anti-correlation of ratios in dye-swap replicates. We further demonstrated that although Lowess normalization effectively eliminates the intensity-dependence of ratio bias, the systematic deviation from true ratios largely remained. A method of calculating ratios based on concentrations estimated from the calibration curves was proposed for correcting ratio bias.

Conclusion

It is preferable to scan microarray slides at fixed, optimal gain settings under which the linearity between concentration and intensity is maximized. Although normalization methods improve reproducibility of microarray measurements, they appear less effective in improving accuracy.
  相似文献   

11.
Since the available microarray data of BOEC (human blood outgrowth endothelial cells), large vessel, and microvascular endothelial cells were from two different platforms, a working cross-platform normalization method was needed to make these data comparable. With six HUVEC (human umbilical vein endothelial cells) samples hybridized on two-channel cDNA arrays and six HUVEC samples on Affymetrix arrays, 64 possible combinations of a three-step normalization procedure were investigated to search for the best normalization method, which was selected, based on two criteria measuring the extent to which expression profiles of biological samples of the same cell type arrayed on two platforms were indistinguishable. Next, three discriminative gene lists between the large vessel and the microvascular endothelial cells were achieved by SAM (significant analysis of microarrays), PAM (prediction analysis for microarrays), and a combination of SAM and PAM lists. The final discriminative gene list was selected by SVM (support vector machine). Based on this discriminative gene list, SVM classification analysis with best tuning parameters and 10,000 times of validations showed that BOEC were far from large vessel cells, they either formed their own class, or fell into the microvascular class. Based on all the common genes between the two platforms, SVM analysis further confirmed this conclusion.  相似文献   

12.
MOTIVATION: When running experiments that involve multiple high density oligonucleotide arrays, it is important to remove sources of variation between arrays of non-biological origin. Normalization is a process for reducing this variation. It is common to see non-linear relations between arrays and the standard normalization provided by Affymetrix does not perform well in these situations. RESULTS: We present three methods of performing normalization at the probe intensity level. These methods are called complete data methods because they make use of data from all arrays in an experiment to form the normalizing relation. These algorithms are compared to two methods that make use of a baseline array: a one number scaling based algorithm and a method that uses a non-linear normalizing relation by comparing the variability and bias of an expression measure. Two publicly available datasets are used to carry out the comparisons. The simplest and quickest complete data method is found to perform favorably. AVAILABILITY: Software implementing all three of the complete data normalization methods is available as part of the R package Affy, which is a part of the Bioconductor project http://www.bioconductor.org. SUPPLEMENTARY INFORMATION: Additional figures may be found at http://www.stat.berkeley.edu/~bolstad/normalize/index.html  相似文献   

13.
There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP) is introduced to aid in intensity-dependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.  相似文献   

14.

Background

Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. This novel technique helps us to understand gene regulation as well as gene by gene interactions more systematically. In the microarray experiment, however, many undesirable systematic variations are observed. Even in replicated experiment, some variations are commonly observed. Normalization is the process of removing some sources of variation which affect the measured gene expression levels. Although a number of normalization methods have been proposed, it has been difficult to decide which methods perform best. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization.

Results

In this paper, we use the variability among the replicated slides to compare performance of normalization methods. We also compare normalization methods with regard to bias and mean square error using simulated data.

Conclusions

Our results show that intensity-dependent normalization often performs better than global normalization methods, and that linear and nonlinear normalization methods perform similarly. These conclusions are based on analysis of 36 cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells. Simulation studies confirm our findings.
  相似文献   

15.

Background  

Normalization is a critical step in analysis of gene expression profiles. For dual-labeled arrays, global normalization assumes that the majority of the genes on the array are non-differentially expressed between the two channels and that the number of over-expressed genes approximately equals the number of under-expressed genes. These assumptions can be inappropriate for custom arrays or arrays in which the reference RNA is very different from the experimental samples.  相似文献   

16.
Normalization removes or minimizes the biases of systematic variation that exists in experimental data sets. This study presents a systematic variation normalization (SVN) procedure for removing systematic variation in two channel microarray gene expression data. Based on an analysis of how systematic variation contributes to variability in microarray data sets, our normalization procedure includes background subtraction determined from the distribution of pixel intensity values from each data acquisition channel and log conversion, linear or non-linear regression, restoration or transformation, and multiarray normalization. In the case when a non-linear regression is required, an empirical polynomial approximation approach is used. Either the high terminated points or their averaged values in the distributions of the pixel intensity values observed in control channels may be used for rescaling multiarray datasets. These pre-processing steps remove systematic variation in the data attributable to variability in microarray slides, assay-batches, the array process, or experimenters. Biologically meaningful comparisons of gene expression patterns between control and test channels or among multiple arrays are therefore unbiased using normalized but not unnormalized datasets.  相似文献   

17.
Normalization of cDNA microarray data   总被引:43,自引:0,他引:43  
Normalization means to adjust microarray data for effects which arise from variation in the technology rather than from biological differences between the RNA samples or between the printed probes. This paper describes normalization methods based on the fact that dye balance typically varies with spot intensity and with spatial position on the array. Print-tip loess normalization provides a well-tested general purpose normalization method which has given good results on a wide range of arrays. The method may be refined by using quality weights for individual spots. The method is best combined with diagnostic plots of the data which display the spatial and intensity trends. When diagnostic plots show that biases still remain in the data after normalization, further normalization steps such as plate-order normalization or scale-normalization between the arrays may be undertaken. Composite normalization may be used when control spots are available which are known to be not differentially expressed. Variations on loess normalization include global loess normalization and two-dimensional normalization. Detailed commands are given to implement the normalization techniques using freely available software.  相似文献   

18.
MOTIVATION: Detailed comparison and analysis of the output of DNA gene expression arrays from multiple samples require global normalization of the measured individual gene intensities from the different hybridizations. This is needed for accounting for variations in array preparation and sample hybridization conditions. RESULTS: Here, we present a simple, robust and accurate procedure for the global normalization of datasets generated with single-channel DNA arrays based on principal component analysis. The procedure makes minimal assumptions about the data and performs well in cases where other standard procedures produced biased estimates. It is also insensitive to data transformation, filtering (thresholding) and pre-screening.  相似文献   

19.
Low-density quantitative real-time PCR (qPCR) arrays are often used to profile expression patterns of microRNAs in various biological milieus. To achieve accurate analysis of expression of miRNAs, non-biological sources of variation in data should be removed through precise normalization of data. We have systematically compared the performance of 19 normalization methods on different subsets of a real miRNA qPCR dataset that covers 40 human tissues. After robustly modeling the mean squared error (MSE) in normalized data, we demonstrate lower variability between replicates is achieved using various methods not applied to high-throughput miRNA qPCR data yet. Normalization methods that use splines or wavelets smoothing to estimate and remove Cq dependent non-linearity between pairs of samples best reduced the MSE of differences in Cq values of replicate samples. These methods also retained between-group variability in different subsets of the dataset.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号