首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.  相似文献   

2.
The skin epidermis and its appendages provide a protective barrier that is impermeable to harmful microbes and also prevents dehydration. To perform their functions while being confronted with the physicochemical traumas of the environment, these tissues undergo continual rejuvenation through homeostasis, and, in addition, they must be primed to undergo wound repair in response to injury. The skin's elixir for maintaining tissue homeostasis, regenerating hair, and repairing the epidermis after injury is its stem cells, which reside in the adult hair follicle, sebaceous gland, and epidermis. Stem cells have the remarkable capacity to both self-perpetuate and also give rise to the differentiating cells that constitute one or more tissues. In recent years, scientists have begun to uncover the properties of skin stem cells and unravel the mysteries underlying their remarkable capacity to perform these feats. In this paper, I outline the basic lineages of the skin epithelia and review some of the major findings about mammalian skin epithelial stem cells that have emerged in the past five years.  相似文献   

3.
A number of homeobox genes have been found to be expressed in skin and its appendages, such as scale and feather, and appear to be candidates for the regulation of the development of these tissues. We report that the proline-rich divergent homeobox gene Hex is expressed during development of chick embryonic skin and its appendages (scale and feather). In situ hybridization analysis revealed that, during development of the skin, a transient expression of the Hex gene was observed. While the expression of Hex in the dermis was closely correlated with proliferation activity of epidermal basal cells, that in the epidermis was related to a suppression of epidermal differentiation. When dermal fibroblasts were transfected with Hex, stimulation of both DNA synthesis and proliferation of the epidermal cells followed by two-fold scale ridge elongation and increase in epidermal area was observed during culture of the skin, whereas epidemal keratinization was not affected. This is the first study to demonstrate that Hex is expressed during development of the skin and its appendages and that its expression in the dermal cells regulates epidermal cell proliferation through epithelial mesenchymal interaction.  相似文献   

4.
How to improve the wound healing quality of severe burn patients is still a challenge due to lack of skin appendages and rete ridges, no matter how much progress has been made in the fields of either stem cell or tissue engineering. We thus systematically studied the growth potential and differentiation capacity of porcine embryonic skin precursors. Implantation of embryonic skin precursors (PESPs) of different gestational ages in nude mice can generate the integrity skin, including epidermis, dermis and skin appendages, such as sweat gland, hair follicle, sebaceous gland, etc.. PESPs of embryonic day 42 possess the maximal growth potential, while, the safe window time of PESPs transplantation for prevention of teratoma risk is E56 or later. In conclusion, PESPs can form the 3 dimensional structures of skin with all necessary skin appendages. Our data strongly indicate that porcine embryonic skin precursors harvested from E56 of minipig may provide new hope for high-quality healing of extensive burns and traumas.  相似文献   

5.
The epidermis, the intestinal epithelium and the bone marrow are constantly renewed. Once a terminally differentiated cell has fulfilled its function, it is eliminated. Thus, new differentiated cells need to be constantly produced by the proliferative compartment to ensure the function of the tissue. As this process continues throughout a lifetime, cells must exist with a large capacity for proliferation within each of these tissues. These cells must also be the depository of all the information necessary for suitable differentiation to occur. This cell population which is qualified as the stem population, has attracted, in recent years, considerable attention not only because of its role during development, but also because of its potential sensitivity to radiations and carcinogenesis and to antineoplastic drugs. The epidermis, which is a stratified and squamous epithelium, has appendages which developed from the primitive epidermis during embryonic life. These appendages are also renewed during the adult lifetime, as illustrated by hair growth. The epidermis proves to be a unique model with which the development and the renewal of a stratified epithelium can be studied.  相似文献   

6.
7.
In this review we present skin biology from the perspective of apoptosis. We stress that apoptosis acts as an important homeostatic and defence mechanism in the developing and mature epidermis. Programmed cell death functions in establishing the architecture of the human epidermis and its appendages during development by deletion of stage-specific cells and in the adult epidermis by elimination of excess and abnormal cells. Arguments are presented to support the hypothesis that known regulators of keratinocyte growth may act as survival factors which suppress the cell death pathway. Surviving cells continue to divide until they encounter anti-proliferative factors. Then, unless cells are severely injured and die of necrosis, they will terminally differentiate to death or will die by apoptosis. The mechanisms controlling keratinocyte maturation are co-ordinated with cell position within the epidermal strata. Inappropriate regulatory signals or response of a cell inappropriate to its state will activate apoptosis. Parallels between terminally differentiating keratinocytes and apoptotic cells imply that terminal differentiation and apoptosis proceed along the same death pathway. For terminally differentiating cells, however, this pathway is more elaborate because it allows expression of tissue- and differentiation-specific genes. A model is presented that integrates apoptosis and keratinocyte growth and differentiation.  相似文献   

8.
Beck B  Blanpain C 《The EMBO journal》2012,31(9):2067-2075
The skin epidermis contains different appendages such as the hair follicle and the sebaceous glands. Recent studies demonstrated that several types of stem cells (SCs) exist in different niches within the epidermis and maintain discrete epidermal compartments, but the exact contribution of each SC populations under physiological conditions is still unclear. In addition, the precise mechanisms controlling the balance between proliferation and differentiation of epidermal SC still remain elusive. Recent studies provide new insights into these important questions by showing the contribution of hair follicle SC to the sebaceous lineage and the importance of chromatin modifications and micro-RNAs (miRs) in regulating epidermal SCs renewal and differentiation. In this review, we will discuss the importance of these papers to our understanding of the mechanisms that control epidermal SC functions.  相似文献   

9.
Skin and its appendages provide a protective barrier against the assaults of the environment. To perform its role, epidermis undergoes an ongoing renewal through a balance of proliferation and differentiation/apoptosis called homeostasis. Keratinocyte stem cells reside in a special microenvironment called niche in basal epidermis, adult hair follicle, and sebaceous glands. While a definite marker has yet to be detected, data raised part in humans and part in the mouse system point to a critical role of stem and its progeny transit amplifying cells in epidermal homeostasis. Stem cells are protected from apoptosis and are long resident in adult epidermis. This renders them more prone to be the origin of skin cancer. In this review, we will outline the main features of adult stem cells in mouse and humans and discuss their fate in relation to differentiation, apoptosis, and cancer. J. Cell. Physiol. 225: 310–315, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
表皮干细胞研究进展   总被引:4,自引:0,他引:4  
王丽娟  王友亮  杨晓 《遗传》2010,32(3):198-204
哺乳动物表皮中包含有多种不同类型的表皮干细胞, 它们共同维持了表皮组织结构的稳态并在皮肤创伤的修复中起重要作用。表皮干细胞具备干细胞两大基本特征: 自我更新和分化, 两者间平衡的破坏通常是皮肤肿瘤和其他皮肤疾病的根源。文章着重叙述了表皮干细胞存在的证据、两大基本特征、分裂模式、调节表皮干细胞的信号通路以及维持其稳态的微观和宏观环境。  相似文献   

11.
More than just proliferation: Myc function in stem cells   总被引:14,自引:0,他引:14  
  相似文献   

12.
The regeneration of the skin and its appendages is thought to occur by the regulated activation of a dedicated stem cell population. A population of cells in the bulge region of the hair follicle has been identified as the putative stem cell of both the follicle and the interfollicular epidermis. While this assertion is supported by a variety of surrogate assays, there has been no direct confirmation of the normal contribution of these cells to the regeneration of structures other than the cycling portion of the hair follicle. Here, we report lineage analysis revealing that the follicular epithelium is derived from cells in the epidermal placode that express Sonic hedgehog. This analysis also demonstrates that the stem cells resident in the follicular bulge that regenerate the follicle are neither the stem cells of the epidermis nor the source of the stem cells of the epidermis in the absence of trauma.  相似文献   

13.
Transformation of amnion epithelium into skin and hair follicles   总被引:11,自引:0,他引:11  
There is increasing interest into the extent to which epithelial differentiation can be altered by mesenchymal influence, and the molecular basis for these changes. In this study, we investigated whether amnion epithelium could be transformed into skin and hair follicles by associating E12.5 to E14.5 mouse amnion from the ROSA 26 strain, with mouse embryonic hair-forming dermis from a wild-type strain. These associations were able to produce fully formed hair follicles with associated sebaceous glands, and skin epidermis. Using beta-galactosidase staining we were able to demonstrate that the follicular epithelium and skin epidermis, but not the associated dermal cells, originated from the amnion. As Noggin and Sonic hedgehog (Shh) were recently shown to be required for early chick ventral skin formation, and able to trigger skin and feather formation from chick amnion, we associated cells engineered to produce those two factors with mouse amnion. In a few cases, we obtained hair buds connected to a pluristratified epithelium; however, the transformation of the amnion was impeded by uncontrolled fibroblastic proliferation. In contrast to an earlier report, none of our control amnion specimens autonomously transformed into skin and hair follicles, indicating that specific influences are necessary to elicit follicle formation from the mouse amnion. The ability to turn amnion into skin and its appendages has practical potential for the tissue engineering of replacement skin, and related biotechnological approaches.  相似文献   

14.
The epidermal cells isolated from 14-day chicken embryo shank skin epidermis were infected in vitro with Rous sarcoma virus (RSV). Within a few weeks, rapidly growing colonies of epithelial cells appeared among the sea of transformed fibroblastic cells. When isolated and subcultured, these cells were found to possess typical markers of skin epidermis. The presence of major keratin and typical epithelial cell type morphology strongly suggested that these cells were transformed epidermal cells retaining their differentiated characteristics but having the capacity to propagate in cell culture. If RSV tsNY68, an RSV mutant having a temperature lesion in the src gene, was used, similar transformed epidermal cells were obtained at 36 degrees C (permissive temperature). At the nonpermissive temperature (41 degrees C) the growth rate of these cells decreased and additional keratin species appeared. At 41 degrees C the cells were flattened and lost the refractivity in their peripheries. All the keratins which are synthesized at the nonpermissive temperature were present in normal differentiated shank skin of 19-day old chick embryo. These cells also had "cornified envelop," indicating extensive differentiation. Viral production was as efficient as transformed fibroblasts during the rapid growth phase, while it declined significantly after the cells reached confluency, exhibiting the differentiated characteristics. Since no normal epidermal cells could be cultured under our experimental conditions, these results represent examples in which the src gene is essential for propagation of differentiated cells in cell culture while it abolishes only a part of differentiated characteristics.  相似文献   

15.
16.
It has previously been shown that expression of human papillomavirus type 16 (HPV) E7 in epidermis causes hyperplasia and chronic inflammation, characteristics of pre-malignant lesions. Importantly, E7-expressing epidermis is strongly immune suppressed and is not rejected when transplanted onto immune competent mice. Professional antigen presenting cells are considered essential for initiation of the adaptive immune response that results in graft rejection. Langerhans cells (LC) are the only antigen presenting cells located in normal epidermis and altered phenotype and function of these cells may contribute to the immune suppressive microenvironment. Here, we show that LC are atypically activated as a direct result of E7 expression in the epidermis, and independent of the presence of lymphocytes. The number of LC was significantly increased and the LC are functionally impaired, both in migration and in antigen uptake. However when the LC were extracted from K14E7 skin and matured in vitro they were functionally competent to present and cross-present antigen, and to activate T cells. The ability of the LC to present and cross-present antigen following maturation supports retention of full functional capacity when removed from the hyperplastic skin microenvironment. As such, opportunities are afforded for the development of therapies to restore normal LC function in hyperplastic skin.  相似文献   

17.
Treatment of skins of newborn mice with the neutral protease Dispase in order to separate dermis and epidermis causes pronounced changes in the levels of transglutaminase activity in the epidermis. Two soluble transglutaminases, one anionic enzyme and one cationic enzyme, of Mr approximately 90,000 and approximately 50,000, respectively, are extracted from epidermis; and the activities of both enzymes increase as a function of the time of Dispase treatment of skin. When the anionic Mr approximately 90,000 enzyme is incubated with Dispase after its chromatographic isolation from epidermal extracts, it is converted to a lower molecular weight enzyme. Hair follicles isolated from dermis prepared by a 12-h Dispase treatment of the skin of newborn mice contain two soluble cationic transglutaminases, one of which is indistinguishable from that of epidermis and the other which is not seen in epidermis. Both of these hair follicle enzymes are of Mr approximately 50,000 and appear to exist in monomeric form. They have been partially purified. Based upon these findings, we suggest that transglutaminase processing and control occur during normal differentiation of keratinocytes in epidermis and of hair follicle epidermal cells in dermis and that production of the proper forms of the enzyme may be essential to the formation of mature cornified envelopes and hair shafts, respectively.  相似文献   

18.
Transforming growth factor-beta-activated kinase 1 (TAK1) is a member of the mitogen-activated protein (MAP) kinase family and is an upstream signaling molecule of nuclear factor-kappaB (NF-kappaB). Given that NF-kappaB regulates keratinocyte differentiation and apoptosis, TAK1 may be essential for epidermal functions. To test this, we generated keratinocyte-specific TAK1-deficient mice from Map3k7(flox/flox) mice and K5-Cre mice. The keratinocyte-specific TAK1-deficient mice were macroscopically indistinguishable from their littermates until postnatal day 2 or 3, when the skin started to roughen and wrinkle. This phenotype progressed, and the mice died by postnatal day 7. Histological analysis showed thickening of the epidermis with foci of keratinocyte apoptosis and intra-epidermal micro-abscesses. Immunohistochemical analysis showed that the suprabasal keratinocytes of the TAK1-deficient epidermis expressed keratin 5 and keratin 14, which are normally confined to the basal layer. The expression of keratin 1, keratin 10, and loricrin, which are markers for the suprabasal and late phase differentiation of the epidermis, was absent from the TAK1-deficient epidermis. Furthermore, the TAK1-deficient epidermis expressed keratin 16 and had an increased number of Ki67-positive cells. These data indicate that TAK1 deficiency in keratinocytes results in abnormal differentiation, increased proliferation, and apoptosis in the epidermis. However, the keratinocytes from the TAK1-deficient epidermis induced keratin 1 in suspension culture, indicating that the TAK1-deficient keratinocytes retain the ability to differentiate. Moreover, the removal of TAK1 from cultured keratinocytes of Map3k7(flox/flox) mice resulted in apoptosis, indicating that TAK1 is essential for preventing apoptosis. In conclusion, TAK1 is essential in the regulation of keratinocyte growth, differentiation, and apoptosis.  相似文献   

19.
《Organogenesis》2013,9(2):123-133
While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity, and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research.  相似文献   

20.
Hair follicles and sweat glands are recognized as reservoirs of melanocyte stem cells (MSCs). Unlike differentiated melanocytes, undifferentiated MSCs do not produce melanin. They serve as a source of differentiated melanocytes for the hair follicle and contribute to the interfollicular epidermis upon wounding, exposure to ultraviolet irradiation or in remission from vitiligo, where repigmentation often spreads outwards from the hair follicles. It is unknown whether these observations reflect the normal homoeostatic mechanism of melanocyte renewal or whether unperturbed interfollicular epidermis can maintain a melanocyte population that is independent of the skin's appendages. Here, we show that mouse tail skin lacking appendages does maintain a stable melanocyte number, including a low frequency of amelanotic melanocytes, into adult life. Furthermore, we show that actively cycling differentiated melanocytes are present in postnatal skin, indicating that amelanotic melanocytes are not uniquely relied on for melanocyte homoeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号