共查询到20条相似文献,搜索用时 0 毫秒
1.
Latent nitrate reductase activity is associated with the plasma membrane of corn roots 总被引:9,自引:0,他引:9
Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.Abbreviations L1
first lower phase
- NR
nitrate reductase
- NRA
nitrate-reductase activity
- PM
plasma membrane
- T:p
Triton X-100 (octylphenoxy polyethoxyethanol) to protein ratio
- U2
second upper phase 相似文献
2.
The effect of cinnamic acid on in vivo nitrate reductase activity and protein content in cucumber cotyledons was studied. Cinnamate increased in vivo nitrate reductase activity and also the total protein content at lower concentrations (0.01–0.1 mM). Higher concentration, however, proved inhibitory. The effect of cinnamate on nitrate reductase activity has been discussed. 相似文献
3.
Maize (Zea mays L.) grown on low (0.8 mM) NO
3
-
, as well as untransformed and transformed Nicotiana plumbaginifolia constitutively expressing nitrate reductase (NR), was used to study the effects of NO
3
-
on the NR activation state. The NR activation state was determined from the relationship of total activity extracted in the presence of ethylenediaminetetracetic acid to that extracted in the presence of Mg2+. Light activation was observed in both maize and tobacco leaves. In the tobacco lines, NO
3
-
did not influence the NR activation state. In excised maize leaves, no correlation was found between the foliar NO
3
-
content and the NR activation state. Similarly, the NR activation state did not respond to NO
3
-
. Since the NR activation state determined from the degree of Mg2+-induced inhibition of NR activity is considered to reflect the phosphorylation state of the NR protein, the protein phosphatase inhibitor microcystin LR was used to test the importance of protein phosphorylation in the NO
3
-
-induced changes in NR activity. In-vivo inhibition of endogenous protein phosphatase activity by microcystin-LR decreased the level of NR activation in the light. This occurred to the same extent in the presence or absence of exogenous NO
3
-
. We conclude that NO
3
-
does not effect the NR activation state, as modulated by protein phosphorylation in either tobacco (a C3 species) or maize (a C4 species). The short-term regulation of NR therefore differs from the NO
3
-
-mediated responses observed for phosphoenolpyruvate carboxylase and sucrose phosphate synthase.Abbreviations Chl
chlorophyll
- MC
microcystin-LR
- PEP-Case
phosphoenolpyruvate carboxylase
- SPS
sucrose-phosphate synthase
We are indebted to Madeleine Provot and Nathalie Hayes for excellent technical assistance. This work was funded by EEC Biotechnology Contract No. BI02 CT93 0400, project of technical priority, Network D — Nitrogen Utilisation and Efficiency. 相似文献
4.
H.S. Srivastava 《Phytochemistry》1980,19(5):725-733
Nitrate reductase is one of the most important enzymes in the assimilation of exogenous nitrate—the predominant form of nitrogen available to green plants growing in soil. Activity of this enzyme in plants gives a good estimate of the nitrogen status of the plant and is very often correlated with growth and yield. Although it is difficult to explain the physiological significance and the mechanism of effects of several factors on the enzyme activity, in some cases suitable postulates have been advanced. In general, the enzyme activity in a plant tissue is a balance between its relative rates of synthesis/degradation and activation/inactivation. Factors may affect the overall activity by interfering with either of these processes. 相似文献
5.
Rapid modulation of nitrate reductase in pea roots 总被引:10,自引:0,他引:10
The regulatory properties of nitrate reductase (NR; EC 1.6.6.1) in root extracts from hydroponically grown pea (Pisum sativum L. cv. Kleine Rheinländerin) plants were examined and compared with known properties of NR from spinach and pea leaves. Nitrate-reductase activity (NRA) extracted from pea roots decreased slowly when plants were kept in the dark, or when illuminated plants were detopped, with a half-time of about 4 h (= slow modulation in vivo). In contrast, the half-time for the dark-inactivation of NR from pea leaves was only 10 min. However, when root tip segments were transferred from aerobic to anaerobic conditions or vice versa, changes in NRA were as rapid as in leaves (= rapid modulation in vivo). Nitrate-reductase activity was low when extracted from roots kept in solutions flushed with air or pure oxygen, and high in nitrogen. Okadaic acid, a specific inhibitor of type-1 and type-2A protein phosphatases, totally prevented the in vivo activation by anaerobiosis of NR, indicating that rapid activation of root NR involved protein dephosphorylation. Under aerobic conditions, the low NRA in roots was also rapidly increased by incubating the roots with either uncouplers or mannose. Under these conditions, and also under anaerobiosis, ATP levels in roots were much lower than in aerated control roots. Thus, whenever ATP levels in roots were artificially decreased, NRA increased rapidly. The highly active NR extracted from anaerobic roots could be partially inactivated in vitro by preincubation of desalted root extracts with MgATP (2 mM), with a half-time of about 20 min. It was reactivated by subsequently incubating the extracts with excess AMP (2 mM). Thus, pea root NR shares many of the previously described properties of NR from spinach leaves, suggesting that the root enzyme, like the leaf enzyme, can be rapidly modulated, probably by reversible protein phosphorylation/ dephosphorylation. 相似文献
6.
7.
The narB gene from the cyanobacterium Synechococcus sp. PCC 7942 was cloned downstream from the LacI-regulated promoter Ptrc in the Escherichia coli vector pTrc99A, rendering plasmid pCSLM1. Addition of isopropyl--D-thiogalactoside to E. coli (pCSLM1) resulted in the parallel expression of a 76 kDa polypeptide and a nitrate reductase activity with properties identical to those known for nitrate reductase isolated from Synechococcus cells. As is the case for nitrate reductase from Synechococcus cells, either reduced methyl viologen or reduced ferredoxin could be used as an electron donor for the reduction of nitrate catalyzed by E. coli (pCSLM1) extracts. This data shows that narB is a cyanobacterial structural gene for nitrate reductase. 相似文献
8.
Activity of nitrate reductase (NR), the first enzyme in the nitrate-assimilation pathway, was estimated in the cotyledons
of the sunflower(
Helianthus annuus) using a standardized in-vivo method. Seedlings were grown in the light on a nitrate medium. Various factors that affect
NR activity were optimized, including the molarity and pH of the reaction buffer, nitrate concentration, and use of a surfactant.
We also determined whether NADH was required for nitrate reduction. The surfactant propanol (2%) gave the best results, and
no NADH supplement was necessary: In a separate study, we compared the effect of various culturing components on in-vivo NR
activity among monocot and dicot species, and found that Triton X-100 was the best surfactant for monocots whereas dicots
performed better with n-propanol. Monocot species also required additional NADH as an external energy source. Moreover, specific
purification procedures were needed to enhance NR activity in dicotyledons. Finally, we also assessed the efficacy of in-vivo
versus in-vitro procedures for assaying monocots versus dicots. 相似文献
9.
Ho Le Thi Teruya Toshiaki Suenaga Kiyotake Duong Van Chin Hisashi Kato-Noguchi 《Plant Growth Regulation》2008,56(1):1-5
The growth inhibitory effect of cucumber (Cucumis sativus L.) plants after crop harvested was investigated. Aqueous methanol extracts of the cucumber plants inhibited the growth of
roots and shoots of cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), alfalfa (Medicago sativa L.), ryegrass (Lolium multiflorum L.), timothy (Pheleum pratense L.), crabgrass (Digitaria sanguinalis L.), Echinochloa crus-galli (L.) Beauv and Echinochloa colonum (L.) Link, and increasing the extract concentration increased the inhibition. These results suggest that cucumber plants
may possess allelopathic activity. The aqueous methanol extract of cucumber plants was divided into ethyl acetate and aqueous
fractions, and the growth inhibitory activity of ethyl acetate fraction was greater than that of aqueous fraction. Thus, ethyl
acetate fraction was further purified and a main allopathically active substance in the fraction was isolated and determined
as (S)-2-benzoyloxy-3-phenyl-1-propanol by spectral data. This substance inhibited root and shoot growth of cress seedlings at
concentrations greater than 10 μM, and the concentration required for 50% inhibition of root and shoot growth was 21 and 23
μM, respectively. These results suggest that (S)-2-benzoyloxy-3-phenyl-1-propanol may contribute to the growth inhibitory effect of cucumber plants and may play an important
role in cucumber allelopathy. Thus, cucumber plants may be potentially useful for weed management in a field setting.
An erratum to this article can be found at 相似文献
10.
Preincubation of maize leaves crude extracts with NADH resulted in a progressive accumulation of nitrite which mimicked a rapid and lineal activation of nitrate reductase. Nevertheless, in partially purified preparations it was found that preincubation at pH 8.8 with NADH promoted a gradual inactivation of nitrate reductase. At pH 7.5, the enzyme was not inactivated by the presence of NADH alone, but, with the simultaneous presence of a low concentration of cyanide, a fast inactivation took place. The NADH-cyanide-inactivated nitrate reductase remained inactive after removing the excess of NADH and cyanide by filtration through Sephadex G-25. However, it could be readily reactivated by incubation with ferricyanide or by a short exposure to light in the presence of FAD. Prolonged irradiation caused a progressive inactivation of the photoreactivated enzyme. 相似文献
11.
Nitrate reductase activity in leaf material ofLolium perenne L. cv. S24 was estimated using anin vivo assay method such that activity could be estimated at intervals of 5 minutes for up to two hours. The pattern of nitrate reductase activity, as estimated by nitrite accumulation, showed pronounced oscillatory behaviour with frequency of approximately 4 cycles per hour; at certain seasons however oscillatory activity was not shown. The phase of the oscillations observed in different experiments was not co-incident with respect to time of day. 相似文献
12.
13.
The effect of substrates on the phosphorylation status of nitrate reductase (NR; EC 1.6.6.1) was studied. The enzyme was obtained from the first leaf of 7-day-old oat (Avena sativa L. cv. Suregrain) plants, grown in the light. When desalted crude extracts were incubated with ATP, NR was strongly phosphorylated, as evidenced by the inhibition of the enzyme's activity in the presence of Mg2+. NR sensitivity to Mg2+ remained unchanged when 10 mM nitrate was added to crude extracts after ATP. Addition of nitrate before or simultaneously with ATP slightly decreased Mg2+ inhibition of NR, which was strongly diminished in the presence of 10 mM NO3?+ 100 µM NADH. Incubation with NADH alone did not affect the enzyme's susceptibility to Mg2+ inhibition. When ammonium sulfate was added to crude extracts, NR was recovered in a 0-40% saturation fraction (F1). After incubation of F1 with ATP, the sensitivity of the enzyme to Mg2+ inhibition remained low, but it strongly increased after mixing F1 with a 45-60% saturation fraction (F2) suggesting that also in oats an additional factor (inactivating protein, IP), which probably binds to phospho-NR, would be required to keep the phosphorylated enzyme inactive in a +Mg2+ medium. Addition of 10 mM NO3?+ 100 µM NADH together with desalted F2 did not prevent Mg2+ inhibition suggesting that NO3? did not interfere with IP binding to phospho-NR. Again, incubation of F1 with both substrates during in vitro phosphorylation kept the enzyme active after adding F2, even in the presence of Mg2+, After in vitro phosphorylation, NR in crude extract was hardly reactivated when incubated alone or in the presence of 10 mM NO3? at 30°C. On the other hand, a strong and very rapid reactivation was found when the extract was incubated with both nitrate and NADH. Microcystine, an inhibitor of types 1 and 2A phosphoprotein phosphatases, inhibited the reactivation of phospho-NR induced by the substrates. The results presented here show that the substrates could prevent NR phosphorylation and induce the enzyme's dephosphorylation, but they were effective only after their binding to the NR protein. Thereby, they seemed to affect the NR protein itself and not the phosphatase- or the kinase-proteins. It has been reported that nitrate binding to the enzyme's active site induces conformational changes in the NR protein. We propose that this conformational change would prevent NR phosphorylation, by converting the enzyme into a form in which the site recognized by the protein kinase is no longer accessible, and, simultaneously, stimulate NR dephophorylation by allowing the specific phosphatases to recognize NR. 相似文献
14.
Carmen Bergareche Roberto Ayuso Carles Masgrau Esther Simon 《Physiologia plantarum》1994,91(2):257-262
Regulation by the active form of phytochrome (PFR ) and the effect of Ca2+ was examined with nitrate reductase (NR) in etiolated cucumber ( Cucumis sativus cv. Beilpuig). Nitrate reductase activity (NRA) was studied in excised cotyledons of cucumber seedlings grown in distilled water and in darkness for seven days at 24 ± 0.5°C. All experiments were performed in the dark and a dim green safelight was used during analyses. In etiolated cucumber cotyledons NRA was induced by nitrate and a brief irradiation (15 min) with red light (R) resulted in 62% increase in NRA. This effect was nullified when R was followed immediately by a brief (5 min) far-red light (FR). NRA also showed a semidian (12 h) rhythmicity. Both PFR , and nitrate effects were age dependent. Calcium seemed to be involved since the phytochrome effect was only observed when calcium was supplied in the external solution. The effect of R on NRA depended on the period of calcium nitrate incubation. An external supply of calcium ionophore mimicked the effect of R and, if supplied to R-irradiated cotyledons, produced a higher NR level than that caused by R alone. This suggested that intracellular free calcium was involved. 相似文献
15.
16.
The influence of cytokinins in nitrate regulation of nitrate reductase activity and expression in barley 总被引:6,自引:0,他引:6
Mariann E. Samuelson Wilbur H. Campbell Carl-Magnus Larsson 《Physiologia plantarum》1995,93(3):533-539
The responses of nitrate reductase (NR) activity and levels of NR-mRNA to environmental nitrate and exogenous cytokinins are characterised in roots and shoots of barley ( Hordeum vulgare L., cv. Golf), using a chemostate-like culture system for controlling nitrate nutrition. Experiments were mainly performed with split root cultures where nitrate-N was supplied at a constant relative addition rate of 0.09 day−1 , and distributed between the subroots in a ratio of 20%:80%. The subroot NR-mRNA level and NR activity, as well as the endogenous level of zeatin riboside (ZR), increased when the local nitrate supply to one of the subroots was increased 4-fold by reversing the nitrate addition ratio (i.e. from 20%:80% to 80%:20%). Also shoot levels of ZR, NR-mRNA and NR activity increased in response to this treatment, even though the total nitrate supply remained unaltered. External supply of ZR at 0.1 μ M caused an approximately 3-fold increase in root ZR levels within 6 h. which is comparable to the nitrate-induced increase in root ZR. External application of ZR. zeatin. isopentenyl adenine or isopentenyl adenosine at 0.1 μ M caused from insignificant to 25% increases in NR-mRNA and activity in roots and up to 100% stimulation in shoots, whereas adenine or adenosine had no effect. No synergistic effects of perturbed nitrate supply and cytokinin application were detected in either roots or shoots. The translocation of nitrate from the root to the shoot was unaffected by application of ZR or switching the nitrate distribution ratio between subroots. The data give arguments for a physiological role of cytokinins in the response of root and shoot NR to environmental nitrate availability. The nature and limitations of the physiological role of cytokinins are discussed. 相似文献
17.
Levels of nitrate reductase activity (N.R.A.) were measured in shoots and roots of P sufficient and P deficient rape plants
and changes in N.R.A. examined in relation to the onset of H ion efflux from the roots. Rates of xylem exudation were measured
and the sap analysed for nitrate, amino-N and phosphate content.
The optimum concentration of phosphate in the leaves for N.R.A. was about 0.7%. Both high and low concentrations of phosphate
within the leaves inhibited N.R.A in those leaves. This inhibition of N.R.A led to the accumulation of nitrate in the older
parts of the shoots of P sufficient plants. Less accumulation of nitrate occurred in the P deficient plants since nitrate
uptake by the plants decreased before any fall in N.R.A.
Xylem exudation rates halved within 18 hours of depriving the plants of phosphate, and, since the composition of the sap remained
constant, this indicated a reduced flux of nitrate into the xylem. The rate of xylem exudation continued to fall and by the
end of the experiment was approximately one tenth of the rate in the P sufficient plants.
The onset of H ion efflux from the terminal portions of the root preceded any effect on N.R.A by 2 days. 相似文献
18.
Three nitrate reductase activities were detected in Alcaligenes eutrophus strain H16 by physiological and mutant analysis. The first (NAS) was subject to repression by ammonia and not affected by oxygen indicating a nitrate assimilatory function. The second (NAR) membrane-bound activity was only formed in the absence of oxygen and was insensitive to ammonia repression indicating a nitrate respiratory function. The third (NAP) activity of potential respiratory function occurred in the soluble fraction of cells grown to the stationary phase of growth. In contrast to NAR and NAS, expression of NAP did not require nitrate for induction and was independent of the rpoN gene product. Genes for the three reductases map at different loci. NAR and NAS are chromosomally encoded whereas NAP is a megaplasmid-borne activity in A. eutrophus. 相似文献
19.
The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (NapSgel) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (NapSput) was examined at varied temperature. Irreversible deactivation of NapSgel and NapSput occurred at 54.5 and 65 °C, respectively. When NapSgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that NapSgel was poised for optimal catalysis at modest temperatures and, unlike NapSput, did not benefit from thermally-induced refolding. At 20 °C, NapSgel reduced selenate at 16% of the rate of nitrate reduction. NapSput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in NapSgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the NapSgel cold-adapted phenotype. Protein homology modeling of NapSgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic substitutions (Asn ↔ His, Val ↔ Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain π–π and/or cation–π interactions. Three mesophilic ↔ psychrophilic substitutions occurred within 4.5 Å of the Mo–MGD cofactor (Phe ↔ Met, Ala ↔ Ser, Ser ↔ Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding networks. These results contribute to the understanding of thermal protein adaptation in a redox-active mononuclear molybdenum enzyme and have implications in optimizing the design of low-temperature environmental biosensors. 相似文献
20.
Wild-type Anabaena cycadeae with normal glutamine synthetase (GS) activity utilized arginine as sole N source whereas a mutant strain lacking GS activity did not. Nitrate reductase (NR) activity, higher in the mutant strain than the wild-type strain, was inhibited by arginine though arginine-dependent NH
4
+
generation was higher in the mutant strain than in the wild-type. This suggests that (1) NR activity is NO
inf3
sup-
-inducible and arginine-repressible; and (2) while GS activity is required for the assimilation of arginine as sole N-source, it is not required for arginine inhibition of NR activity.S. Singh was with the Department of Biochemistry, North-Eastern Hill University, Shillong-793014, India, and is now with P.S. Bisen at the Department of Microbiology, Barkatullah University, Bhopal-462026, India 相似文献