首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been made on the possible involvement of malondialdehyde (MDA) and (E)-4-hydroxynon-2-enal (HNE), two terminal compounds of lipid peroxidation, in modifying xanthine oxidoreductase activity through interaction with the oxidase (XO) and/or dehydrogenase (XDH) forms. The effect of the two aldehydes on XO (reversible, XO(rev), and irreversible, XO(irr)) and XDH was studied using xanthine oxidase from milk and xanthine oxidoreductase partially purified from rat liver. The incubation of milk xanthine oxidase with these aldehydes resulted in the inactivation of the enzyme following pseudo-first-order kinetics: enzyme activity was completely abolished by MDA (0.5-4 mM), while residual activity (5% of the starting value) associated with an XO(irr) form was always observed when the enzyme was incubated in the presence of HNE (0.5-4 mM). The addition of glutathione to the incubation mixtures prevented enzyme inactivation by HNE. The study on the xanthine oxidoreductase partially purified from rat liver showed that MDA decreases the total enzyme activity, acting only with the XO forms. On the contrary HNE leaves the same level of total activity but causes the conversion of XDH into an XO(irr) form.  相似文献   

2.
RT-PCR扩增猕猴黄嘌呤脱氢酶/氧化酶(XDH/XO)基因片段,为进一步开展相关研究提供实验资料。方法提取猕猴新鲜肝脏组织总RNA,用RT-PCR二步法进行XDH/XO基因片段扩增,对获得的目的片段进行序列测定,与GenBank上发表的人类(Homosapiens)、小鼠(Musmusculus)、家鼠(Rattusnorvegicus)、野猪(Susscrofa)等物种XDH/XO基因进行该序列同源性比对分析,DNAMAN软件预测该段核苷酸的氨基酸序列,Inter-ProScan及SWISS-MODEL工具进行XDH/XO的编码蛋白结构域及功能预测及三维结构构建。结果RT-PCR产物电泳检测得到了与设计大小相一致的目的条带,序列测定共测到683个核苷酸,DNAMAN软件预测该段核苷酸的氨基酸序列包括了1个编码53个氨基酸的开放阅读框(ORF),通过该软件包中Multiplealignment对目的基因片段的核苷酸序列与NCBI报道的人类、小鼠、家鼠、野猪XDH/XO基因mRNA互补的cDNA核苷酸序列同源性进行同源性比较分析,结果显示所扩增得到的目的片段与人类同源性最高,为95.6%,与小鼠、家鼠、野猪的同源性分别为85.2%、84.3%、86.1%,说明获得的基因片段是猕猴的XDH/XO基因片段,且该基因在物种间具有较高的相似性。生物信息学预测该段XDH/XO编码蛋白含有醛氧化/脱氢酶的钼喋呤结合点结构域及黄嘌呤脱氢酶结构域。结论在体外成功扩增出猕猴XDH/XO基因片段,为进一步开展高尿酸血症致病机理研究,抗高尿酸血症新药研发奠定工作基础。  相似文献   

3.
We have detected xanthine oxidoreductase activity in unfixed cryostat sections of rat and chicken liver, rat duodenum, and bovine mammary gland using the tissue protectant polyvinyl alcohol, the electron carrier 1-methoxyphenazine methosulfate, the final electron acceptor Tetranitro BT, and hypoxanthine as a substrate. Enzyme activity was localized in rat duodenum at lateral membranes and brush borders of enterocytes and in goblet cells and mucus. Hepatocytes in pericentral areas and especially sinusoidal cells showed high activity in rat liver. Xanthine oxidoreductase was also detected in epithelial cells and milk lipid globules of lactating bovine mammary gland, which is known to contain large quantities of the oxidase form of the enzyme. Chicken liver, which contains an inconvertible dehydrogenase form, also showed high activity in sinusoidal cells. Therefore, we conclude that the tetrazolium reaction demonstrates both the dehydrogenase and the oxidase form of xanthine oxidoreductase. Control activity, in the absence of hypoxanthine or in the presence of the competitive inhibitor allopurinol, was low in all tissues studied. Addition of O2 or NAD to the incubation medium did not change the specific reaction in bovine mammary gland or chicken liver, implying that the dehydrogenase and the oxidase form are not dependent on their natural electron acceptors in this tetrazolium salt reaction. We conclude that the present light microscopic method gives specific and precise localization of xanthine oxidoreductase activity in situ.  相似文献   

4.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

5.
To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2 •− source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2 •− molecule and half a H2O2 molecule per NADH molecule, at rates 3 times those observed for XO (29.2 ± 1.6 and 9.38 ± 0.31 min−1, respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 ± 1.36 μM−1 min−1) was found to be higher than that of the XO specificity constant (1.07 ± 0.09 μM−1 min−1). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2 •− source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2 •− than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.  相似文献   

6.
Milk xanthine oxidase (xanthine: oxygen oxidore-ductase; XO; EC 1.1.3.22) was found to catalyze the conversion of retinaldehyde to retinoic acid. The ability of XO to synthesize all trans-retinoic acid efficiently was assessed by its turnover number of 31.56 min?1, determined at pH 7.0 with 1nM XO and all trans-retinaldehyde varying between 0.05 to 2μM. The determination of both retinoid and purine content in milk was also considered in order to correlate their concentrations with kinetic parameters of retinaldehyde oxidase activity. The velocity of the reaction was dependent on the isomeric form of the substrate, the all trans- and 9-cis-forms being the preferred substrates rather than 13-cis-retinaldehyde. The enzyme was able to oxidize retinaldehyde in the presence of oxygen with NAD or without NAD addition. In this latter condition the catalytic efficiency of the enzyme was higher. The synthesis of retinoic acid was inhibited 87% and 54% by 4μM and 2μM allopurinol respectively and inhibited 48% by 10 μM xanthine in enzyme assays performed at 2μM all trans-retinaldehyde. The Ki value determined for xanthine as an inhibitor of retinaldehyde oxidase activity was 4 μM.  相似文献   

7.
Xanthine oxidase, an iron-sulfur molybdenum flavoprotein known to generate superoxide radical, was demonstrated in several bovine tissues. The enzyme (155 kd polypeptide) was purified from bovine milk lipid globules and antibodies were raised that allowed precipitation of the enzyme without inactivation of enzymatic activity. By immunolocalization techniques at light and electron microscope levels, the antigen was found in milk-secreting epithelial cells but not in epithelial cells of several other tissues. In a number of tissues, including mammary gland, liver, heart, lung and intestine, antibodies to xanthine oxidase stained only endothelial cells of capillaries, including sinusoids, but not endothelia of larger blood vessels and endocard. In both milk-secreting epithelial and capillary endothelial cells, xanthine oxidase was distributed throughout the cytoplasm. Results from biochemical and immunological studies suggest that xanthine oxidase is similar in the various tissues examined and may serve similar redox functions.  相似文献   

8.
Abstract

A new affinity gel was synthesized for the purification of xanthine oxidase (XO, EC 1.2.3.22) from bovine milk. The gel was prepared on a Sepharose 4B matrix on which a spacer arm based on l-tyrosine was covalently attached via CNBr activation, followed by reaction with the XO inhibitor p-aminobenzamidine. The elution conditions of affinity gel were determined at different pH values and ionic strengths. Maximum elution of XO was achieved at pH 9.0 and ionic strength around 0.4. The overall purification for XO was 1645-fold with 20.49% yield. SDS-PAGE of the enzyme indicates a single band with an apparent MW of 150?kDa. The gel provides a simple, rapid and effective useful for the purification of XO. Heat stability was determined on purified XO activity. Xanthine oxidase was preserved up to 70% with activity exposure of 60?°C and incubated for 60?min. These results indicated that the enzyme was heat stable.  相似文献   

9.
Denver, Tokyo, and Salt Lake City investigators recently published different complimentary deoxyribonucleic acid (cDNA) sequences for human liver xanthine dehydrogenase/xanthine oxidase (XD/XO). The gene encoding the Denver cDNA was subsequently linked to juvenile familial amyotrophic lateral sclerosis (JFALS) at chromosome 2q33 and has been proposed as the ALS2 locus. The present investigation was undertaken to elucidate the differences between the three cDNA sequences, and we provide evidence that the Denver cDNA encodes aldehyde oxidase (AO): first, the Denver cDNA sequence diverged significantly from the Tokyo and Salt Lake City cDNA sequences which were very similar; second, the deduced protein sequence from the Denver cDNA was very similar to the amino acid sequence of purified rabbit liver AO protein; third, the deduced Denver protein sequence was 76% identical to the encoded 101 amino acid long peptides from partial cDNAs for rabbit and rat AO and 81.7% identical to 300 amino acids from an incomplete cDNA encoding bovine AO; fourth, the Denver gene was expressed in liver, kidney, lung, pancreas, prostate, testes, and ovary while the Tokyo XD gene was expressed predominantly in liver and small intestine; fifth, the Denver gene was previously mapped to chromosome 2q33 which is syntenic to the mouse AO locus on chromosome 1. Our results have revealed dramatic similarities in protein and DNA sequence in the human molybdenum hydroxylases, have uncovered unanticipated complexity in the human molybdenum hydroxylase genes, and advance the potential for AO derived oxygen radicals in JFALS and other human diseases.  相似文献   

10.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

11.
Abstract

In this preliminary study, a new series of some cerium vanadate derivatives have been investigated as new type of inhibitors of xanthine oxidase (XO; E.C 1.17.3.2). XO is a superoxide-producing enzyme found normally in serum and the lungs, and its activity is concerned with several important health problems such as gout, severe liver damage, vascular dysfunction and injury, oxidative eye injury and renal failure. In this study, we present a critical overview of the effects of these novel type agents on XO with comparing the efficacy and safety profiles of allopurinol, the efficient classical inhibitor of XO.  相似文献   

12.
1. N-glycanase, but not O-glycanase, released carbohydrates from butyrophilin of rat and cow milk lipid globule membranes. 2. 1-Deoxynojirimycin, and inhibitor of glucosidases I and II of the glycoprotein processing pathway, increased the amount or extent of glycosylation of butyrophilin in rat milk lipid globules. 3. Butyrophilin and xanthine oxidase of milk lipid globule membrane had a nearest neighbor relationship, as demonstrated through specific crosslinking of these proteins. 4. From these results it is suggested that butyrophilin has asparagine-linked oligosaccharides which bypass the processing apparatus of endoplasmic reticulum and Golgi apparatus. Butyrophilin may be responsible for anchoring xanthine oxidase to the inner (cytoplasmic) face of milk lipid globule membrane.  相似文献   

13.
14.
Flavonoids are an important group of natural compounds that can interfere with the activity of some enzymes. In this study, effects of various flavonoids on aldehyde oxidase (AO) activity were evaluated in vitro. AO was partially purified from guinea pig liver. The effects of 12 flavonoids from three subclasses of flavon-3-ol, flavan-3-ol and flavanone on the oxidation of vanillin and phenanthridine as substrates of AO and xanthine as a substrate of xanthine oxidase (XO) were investigated spectrophotometrically. Among the 12 flavonoids, myricetin and quercetin were the most potent inhibitors of both AO and XO. In general, the oxidation of vanillin was more inhibited by flavonoids than that of phenanthridine. Almost all of the flavonoids inhibited AO activity more potently than XO, which was more evident with non-planner flavanols. A planner structure seems to be essential for a potent inhibitory effect and any substitution by sugar moieties reduces the inhibitory effects. This study could provide a new insight into AO natural inhibitors with potential to lead to some food-drug interactions.  相似文献   

15.
A series of hydroxychalcone derivatives have been designed, synthesized and evaluated for human xanthine oxidase (XO) inhibitory activity. Most of the tested compounds acted moderate XO inhibition with IC50 values in the micromolar rang. Molecular docking and kinetic studies have been performed to explain the binding modes of XO with the selected compounds. In addition, in vitro antioxidant screening results indicated that some of the hydroxychalcones possessed good anti-free radical activities. Furthermore, the preferred compounds 16 and 18 were able to significantly inhibit hepatic xanthine oxidase activity and reduced serum uric acid level of hyperuricemic mice in vivo. In summary, compounds 16 and 18 with balanced activities of antioxidant, XO inhibition and serum uric acid reduction, which are promising candidates for the treatment of hyperuricemia and gout.  相似文献   

16.
The aims of this study were to test the hypothesis that the substrates of xanthine oxidase (XO), xanthine and hypoxanthine, are consumed while the milk is stored in the gland between milkings, and to explore how XO activity responds to bacteria commonly associated with subclinical infections in the mammary gland. Freshly secreted milk was obtained following complete evacuation of the gland and induction of milk ejection with oxytocin. In bacteria-free fresh milk xanthine and hypoxanthine were converted to uric acid within 30 min (T1/2 approximately 10 min), which in turn provides electrons for formation of hydrogen peroxide and endows the alveolar lumen with passive protection against invading bacteria. On the other hand, the longer residence time of milk in the cistern compartment was not associated with oxidative stress as a result of XO idleness caused by exhaustion of its physiological fuels. The specific response of XO to bacteria species and the resulting bacteria-dependent nitrosative stress further demonstrates that it is part of the gland immune system.  相似文献   

17.
Rats were given a single dose of saline, saline supplemented with xanthine oxidase (XO), half cream and half milk (H/H) and H/H supplemented with XO. XO was determined by a spectrophotometric method at 297 nm in serum at 0, 2, 4 and 6 hours after administration. The method is rapid, reliable and compares favorably with reported assays. No significant difference was obtained between the two saline treatments. The XO activity in serum of animals receiving the H/H increased significantly at 2 hours and then decreased. The H/H supplemented with XO demonstrated a maximum activity in serum at 4 hours and then declined to a value similar to that of the H/H treatment and below the XO level at 0 time. The initial increase in XO activity in serum of rats receiving the H/H treatments may indicate that XO is absorbed in the gastrointestinal tract or that the H/H materials stimulated endogenous XO activity.  相似文献   

18.
Summary 5,6-Diaminouracil (DAU), was found to be a gratuitous inducer of xanthine oxidase (XO) in Arthrobacter globiformis M4. Synthesis of urate oxidase was not induced by this compound. Preparation of a biocatalyst rich in XO could be achieved by exposing continuously grown cells to low concentrations of DAU.  相似文献   

19.
The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreductase activity in cultured V79 cells was increased with exposure to ferric ammonium sulfate and inhibited by deferoxamine. Lung XO and total xanthine oxidoreductase activities were reduced in rats fed an iron-depleted diet and increased in rats supplemented with iron, without change in the ratio of XO to total oxidoreductase. Intratracheal injection of an iron salt or silica-iron, but not aluminum salts or silica-zinc, significantly increased rat lung XO and total xanthine oxidoreductase activities, immunoreactive xanthine oxidoreductase, and the concentration of urate in bronchoalveolar fluid. These results suggest the possibility that the production of uric acid, a major chelator of iron in extracellular fluid, is directly influenced by iron-mediated regulation of the expression and/or activity of its enzymatic source, xanthine oxidase.  相似文献   

20.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of O*- and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating O*- and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号