首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death constitutes a common fundamental incident occurring during oogenesis in a variety of different organisms. In Drosophila melanogaster, it plays a significant role in the maturation process of the egg chamber. In the present study, we have used an in vitro development system for studying the effects of inducers and inhibitors of programmed cell death during the late stages of oogenesis. Treatment of the developing egg chambers with two widely used inducers of cell death, etoposide and staurosporine, blocks further development and induces chromatin condensation but not DNA fragmentation in nurse and follicle cells, as revealed by propidium iodide staining and terminal transferase-mediated dUTP nick-end labeling assay. Moreover, incubation of the developing egg chambers with the caspase-3 inhibitor Z-DEVD-FMK significantly delays development, prevents DNA fragmentation, but does not affect chromatin condensation. The above results demonstrate, for the first time, that chromatin condensation in Drosophila ovarian nurse and follicle cells is a caspase-3-like independent process and is regulated independently from DNA fragmentation.  相似文献   

2.
The Drosophila melanogaster mutant fs(1)1304 is an ovary autonomous female sterile mutant that causes abnormal morphology of the egg. Vitellogenesis proceeds at an abnormally slow rate in homozygous females. We have used pole cell transplantation to construct germ line mosaics in order to determine whether the 1304 defect depends upon the genotype of the germ line cells (oocyte or nurse cells) or the somatic line (follicle cells). We have found that the germ line is the primary target tissue where the mutant gene is expressed.  相似文献   

3.
A small proportion of ovarian chambers from females homozygous for the otu7 (for ovarian tumor) mutation contain an "oocyte" that in its nuclear morphology resembles a nurse cell. Such transformed oocytes also appear in colchicine-poisoned wild type ovaries. Cytophotometric estimates demonstrate that these oocytes have undergone 3-4 additional DNA replications, but that they lag behind the adjacent nurse cells by an average of 1.3 replication cycles. It follows that, under certain circumstances, the definitive oocyte can switch to the nurse cell developmental pathway and therefore that a mechanism normally exists for preventing the further replication of its DNA. In the case of otu7, oocytes sometimes restart their endocyclic DNA replications and produce paired, polytene, homologous chromosomes.  相似文献   

4.
E. Johnson  S. Wayne    R. Nagoshi 《Genetics》1995,140(1):207-217
Phenotypic and genetic analyses demonstrate that fs(1)Yb activity is required in the soma for the development of a subset of ovarian follicle cells and to support later stages of egg maturation. Mutations in fs(1)Yb cause a range of ovarian phenotypes, from the improper segregation of egg chambers to abnormal dorsal appendage formation. The mutant phenotypes associated with fs(1)Yb are very similar to the ovarian aberrations produced by temperature-sensitive alleles of Notch and Delta. Possible functional or regulatory interactions between fs(1)Yb and Notch are suggested by genetic studies. A duplication of the Notch locus partially suppresses the female-sterility caused by fs(1)Yb mutations, while reducing Notch dosage makes the fs(1)Yb mutant phenotype more severe. In addition, fs(1)Yb alleles also interact with genes that are known to act with or regulate Notch activity, including Delta, daughterless, and mastermind. However, differences between the mutant ovarian phenotype of fs(1)Yb and that of Notch or Delta indicate that the genes do not have completely overlapping functions in the ovary. We propose that fs(1)Yb acts as an ovary-specific factor that determines follicle cell fate.  相似文献   

5.
 In Drosophila a remarkable feature of oogenesis is the regression of the nurse cells after dumping their cytoplasmic contents into the oocyte. We have studied the nature of this process at the late stages of egg chamber development. In egg chambers DAPI staining shows highly condensed chromatin from stage 12 and TUNEL labelling shows DNA fragmentation up to stage 14. Gel electrophoresis of the end-labelled DNA, extracted from isolated egg chambers at the same stages of development, shows a ladder typical of apoptotic nuclei. This provides evidence that, during Drosophila oogenesis, the nurse cells undergo apoptosis. Apoptotic nuclei have also been detected in dumping-defective egg chambers, indicating that the cytoplasmic depletion of nurse cells is concurrent with but apparently not the cause of the process. Received: 12 December 1997 / Accepted: 6 January 1998  相似文献   

6.
Amounts of chromosomal DNA were estimated for Feulgen-stained, ovarian cells from flies carrying certain mutant alleles of the otu (ovarian tumor) gene. Epithelial sheath cells and lumen cells were found to contain the diploid (2C) amount of DNA and therefore served as internal, cytophotometric standards. Mitotically active follicle cells over young tumors from homozygous otu1 females contained either the 2C or 4C amounts of DNA; whereas, the tumor cell population contained 2C, 4C and 8C nuclei and many intermediate values. Egg chambers also occur in homozygous otu7 females. Follicle cells above these oocytes undergo a maximum of four cycles of endomitotic DNA replication. The accompanying nurse cells (PNC) contain polytene chromosomes. These undergo a maximum of 12 endonuclear replication cycles. The PNCs show the expected levels of DNA for the first 6 cycles and the fraction failing to replicate during subsequent cycles may be as small as 10%. Lower than expected levels of DNA were detected in PNCs from an otu1/otu3 ovary, reflecting roughly 20% underreplication. The latter PNCs may have been interrupted before DNA synthesis was concluded. No simple model of genomic underreplication accounts for the several different patterns of DNA behavior observed for various otu mutants.  相似文献   

7.
8.
InCecidomyiidae the number of trophocytes derived from the somatic tissue of the ovary and forming nutritive chambers of egg follicles is variable. The regulation of growth of the whole nutritive chambers and of the nurse nuclei was investigated in two species of the gall midges,Mikiola fagi andBoucheella artemisiae, at two different stages of the egg follicle development during the second period of the oocyte growth. The volume of a nutritive chamber is correlated with the size of the egg follicle as a whole and is not dependent on the number of nurse nuclei it contains. The total volume of nurse nuclei at each stage under investigation was found to have a constant value which is independent of their number. It was established that the growth of the nurse nuclei takes place through endomitosis, and that at a given stage of the egg follicle development the constant value of the total volume of the nurse nuclei reflects the constancy of degree of their total polyploidy. The results obtained indicate that at the early stages of the egg follicle development the rates of growth of the nurse nuclei and of the whole nutritive chambers in the egg follicles differing with respect to the number of their nurse nuclei must be different; the greater the number of nurse nuclei in a given nutritive chamber the slower the rate of growth of the chamber and their nuclei. As a result of this differential rate of growth the volumes of the nutritive chambers and total volumes of nurse nuclei reach at a certain stage of the egg follicle development certain values common for all egg follicles, irrespective of the number of the nurse nuclei they contain. Beginning with this stage the dependence between the endomitotic activity of the nurse nuclei and the rate of growth of the whole nutritive chamber on the one hand, and the number of the nurse nuclei in the chamber on the other, evidently disappears. The available evidence supports the hypothesis that in the egg follicle ofCecidomyiidae the growth regulation of nurse nuclei and, indirectly, also of whole nutritive chambers results from developmental interrelationships between the oocyte and the nutritive chamber, and that the oocyte plays a leading role in this process. In view of a syncytial character of the nutritive chambers inCecidomyiidae and distinctly expressed asynchrony of the growth-duplication cycles of nurse nuclei belonging to a given chamber it is concluded that the control mechanism for DNA synthesis and endomitosis in nurse nuclei must possess the property of a rapid switch. Processes of the growth regulation of the nurse nuclei are discussed in connection with the role of the nutritive chamber in production of RNA and its supply to the growing oocyte. It is suggested that in the egg follicles ofCecidomyiidae there exists a complex interrelationship between the control mechanism for DNA synthesis and endomitosis in the nurse nuclei and the synthetic processes regulated by the supply of the growing oocyte with RNA produced by the nuclei of the nutritive chamber.  相似文献   

9.
The female sterile mutant of Drosophila melanogaster, fs(1)1304 (1-19 +/- 2), has been characterized. Our studies show that the mutation affects the organization of nucleolar material in the ovarian nurse cells and the pattern of RNA metabolism in the ovary. Autoradiographic analysis of incorporation of 3H-uridine in vivo and analysis of 3H-uridine incorporation into high molecular weight RNA in vitro suggest that RNA from the ovaries of homozygous fs flies is degraded at a higher rate than that from heterozygous fs and wild-type ovaries. It is likely that the RNA class affected is ribosomal RNA. These data are discussed in the context of the functional role for the wild-type gene allelic to fs(1)1304, and it is suggested that one of the effects of the mutation may be on the biogenesis of ribosomes that are to be stored in the oocyte.  相似文献   

10.
F Giorgi 《Histochemistry》1977,52(2):105-117
Ovarian follicle cells of Drosophila melanogaster have been studied by ultrastructural and autoradiographic analyses. During their migration through the germarium, follicle cells undergo several structural changes and, of these, the most conspicuous one occurs at the level of the nucleolus. By the time the first ovarian chamber is formed, follicle cells have formed a layer of uniform thickness all around a cluster or nurse cells and the oocyte. Following the initiation of vitellogenesis, the follicle cells overlaying the oocyte become columnar while those over the nurse cells become very thin. During stages 9-10, the columnar follicle cells are involved in the formation of the vitelline membrane, while from stages 11 to 13 these cells produce the endochorion. An EM autoradiographic analysis has shown that the rate of 3H-uridine incorporation in follicle cells nuclei is low in previtellogenic chambers, while it becomes very high in nuclei of stage 9-10 chambers. After short exposure to uridine, silver grains are located predominantly over nucleoli. Evidence from incorporation studies with 3H-lysine indicates that the columnar follicle cells and the region of the various egg coverings are highly labelled within an hour of incubation in the tracer. The observations confirm that columnar follicle cells are the only cells in the chamber involved in the formation of materials which make up the egg coverings.  相似文献   

11.
In the present study, we demonstrate the existence of two distinct apoptotic patterns in nurse cells during Ceratitis capitata oogenesis. One is developmentally regulated and normally occurs during stages 12 and 13, and the other is stage specific and is sporadically observed during stages 7 and 8. The pre-apoptotic manifestation of the first pattern begins at stage 11 and is characterized by the formation of actin bundles. Subsequently, at stages 12 and 13, the nurse cell nuclei exhibit condensed chromatin and contain fragmented DNA, as revealed by TUNEL assay. The apoptotic nurse cell remnants are phagocytosed by the neighboring follicle cells at the end of oogenesis during stages 13 and 14. In the second apoptotic pattern, which occurs sporadically during stages 7 and 8, the nurse cells degenerate and are phagocytosed by the follicular epithelium that contains apoptotic cell bodies. The data presented herein, compared to previous reported results in Drosophila melanogaster and Dacus oleae (Nezis et al., 2000, 2001), strongly suggest that nurse cell apoptosis is a developmentally regulated and phylogenetically conserved mechanism in higher Dipteran. They also suggest that, the sporadic apoptotic pattern consists of a possible protective mechanism throughout oogenesis when damaged or abnormal egg chambers, are eliminated before they reach maturity.  相似文献   

12.
13.
14.
Summary Amounts of chromosomal DNA were estimated for Feulgen-stained, ovarian cells from flies carrying certain mutant alleles of the otu (ovarian tumor) gene. Epithelial sheath cells and lumen cells were found to contain the diploid (2C) amount of DNA and therefore served as internal, cytophotometric standards. Mitotically active follicle cells over young tumors-from homozygous otu 1 females contained either the 2C or 4C amounts of DNA; whereas, the tumor cell population contained 2C, 4C and 8C nuclei and many intermediate values. Egg chambers also occur in homozygous otu 7 females. Follicle cells above these oocytes undergo a maximum of four cycles of endomitotic DNA replication. The accompanying nurse cells (PNC) contain polytene chromosomes. These undergo a maximum of 12 endonuclear replication cycles. The PNCs show the expected levels of DNA for the first 6 cycles and the fraction failing to replicate during subsequent cycles may be as small as 10%. Lower than expected levels of DNA were detected in PNCs from an otu 1/otu 3 ovary, reflecting roughly 20% underreplication. The latter PNCs may have been interrupted before DNA synthesis was concluded. No simple model of genomic underreplication accounts for the several different patterns of DNA behavior observed for various otu mutants.  相似文献   

15.
Summary Ovarian follicle cells of Drosophila melanogaster have been studied by ultrastructural and autoradiographic analyses.During their migration through the germarium, follicle cells undergo several structural changes and, of these, the most conspicuous one occurs at the level of the nucleolus. By the time the first ovarian chamber is formed, follicle cells have formed a layer of uniform thickness all around a cluster or nurse cells and the oocyte. Following the initiation of vitellogenesis, the follicle cells overlying the oocyte become columnar while those over the nurse cells become very thin. During stages 9–10, the columnar follicle cells are involved in the formation of the vitelline membrane, while from stages 11 to 13 these cells produce the endochorion.An EM autoradiographic analysis has shown that the rate of 3H-uridine incroporation in follicle cell nuclei is low in previtellogenic chambers, while it becomes very high in nuclei of stage 9–10 chambers. After short exposure to uridine, silver grains are located predominantly over nucleoli.Evidence from incorporation studies with 3H-lysine indicates that the columnar follicle cells and the region of the various egg coverings are highly labelled within an hour of incubation in the tracer.The observations confirm that columnar follicle cells are the only cells in the chamber involved in the formation of materials which make up the egg coverings.This work was partly supported by C.N.R. (Italy)I am indebted to Dr. J. Jacob from the Institute of Animal Genetics (Edinburgh) for introducing me to the use of EM autoradiography  相似文献   

16.
Summary A small proportion of ovarian chambers from females homozygous for theotu 7 (forovariantumor) mutation contain an oocyte that in its nuclear morphology resembles a nurse cell. Such transformed oocytes also appear in colchicine-poisoned wild type ovaries. Cytophotometric estimates demonstrate that these oocytes have undergone 3–4 additional DNA replications, but that they lag behind the adjacent nurse cells by an average of 1.3 replication cycles. It follows that, under certain circumstances, the definitive oocyte can switch to the nurse cell developmental pathway and therefore that a mechanism normally exists for preventing the further replication of its DNA. In the case ofotu 7, oocytes sometimes restart their endocyclic DNA replications and produce paired, polytene, homologous chromosomes.  相似文献   

17.
Programmed cell death consists of two major types, apoptotic and autophagic, both of which are mainly defined by morphological criteria. Our findings indicate that both types of programmed cell death occur in the ovarian nurse cells during middle- and late-oogenesis of Drosophila virilis. During mid-oogenesis, the spontaneously degenerated egg chambers exhibit typical characteristics of apoptotic cell death. Their nurse cells contain condensed chromatin and fragmented DNA, whereas active caspase assays and immunostaining procedures demonstrate the presence of highly activated caspases. Distinct features of autophagic cell death are also observed during D. virilis mid-oogenesis, as shown by monodansylcadaverine staining and ultrastructural examination performed by transmission electron microscopy. Additionally, atretic egg chambers exhibit an accumulation of lysosomal proteases. At the late stages of D. virilis oogenesis, apoptosis and autophagy coexist, manifesting cell death features that are similar to the ones described above, being also escorted by the involvement of an altered cytochrome c conformational display. We propose that apoptosis and autophagy operate synergistically during D. virilis oogenesis for a more efficient elimination of the degenerated nurse cells.  相似文献   

18.
An ovarian follicle of Drosophila consists of an oocyte, 15 nurse cells, and hundreds of follicular epithelial cells. A freeze-fracture analysis of the surfaces between glutaraldehyde-fixed ovarian cells showed that all three cell types were interconnected by gap junctions. This is the first report of gap junctions between adjacent nurse cells, between nurse cells and oocytes, and between follicle cells and oocytes in Drosophila. Since we did not observe intramembranous particle clumping into crystalline patterns and since structurally different gap junctions occurred at different times in development and at different cell-cell interfaces, it is unlikely that fixation artifacts influenced particle distribution in our experiments. A computer-assisted morphometric analysis showed that the extent, size, and morphology of gap junctions varied with development and that these junctions can cover up to 9% of the cell surfaces. To test the role of gap junctions in follicular maturation, we studied ovaries from flies homozygous for the female sterile mutation fs(2)A17, in which follicles develop normally until yolk deposition commences. During the development of mutant follicles, gap junctions became abnormal before any other morphological aspect of the follicle. These studies show that gap junctions are available to play an important role in coordinating intercellular activities between all three cell types in ovarian follicles of Drosophila.  相似文献   

19.
The cytology of the vitellogenic stages in the development of the oocyte of Drosophila melanogaster has been studied using whole mounts and sections of plastic-embedded ovaries and single egg chambers for light microscopy and cytochemistry. The migrations, changes in morphology, and synthetic products of the follicle cells are described as a function of developmental stage. The follicle cells synthesize the egg coverings, the vitelline and chorionic membranes, and elaborate the micropyle and dorsal chorionic appendages. The changing structure of the nurse cell nucleus and changes in organelle composition of its cytoplasm are described. The nurse cells synthesize ribosomes, lipid droplets, and mitochondria. These components pass through the ring canal system into the oocyte, which increases in volume some 200,000 times during its 78 hours of development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号