共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding malate dehydrogenase (MDH) was overexpressed in a pflB ldhA double mutant of Escherichia coli, NZN111, for succinic acid production. With MDH overexpression, NZN111/pTrc99A-mdh restored the ability to metabolize glucose anaerobically and 0.55 g/L of succinic acid was produced from 3 g/L of glucose
in shake flask culture. When supplied with 10 g/L of sodium bicarbonate (NaHCO3), the succinic acid yield of NZN111/pTrc99A-mdh reached 1.14 mol/mol glucose. Supply of NaHCO3 also improved succinic acid production by the control strain, NZN111/pTrc99A. Measurement of key enzymes activities revealed
that phosphoenolpyruvate (PEP) carboxykinase and PEP carboxylase in addition to MDH played important roles. Two-stage culture
of NZN111/pTrc99A-mdh was carried out in a 5-L bioreactor and 12.2 g/L of succinic acid were produced from 15.6 g/L of glucose. Fed-batch culture
was also performed, and the succinic acid concentration reached 31.9 g/L with a yield of 1.19 mol/mol glucose. 相似文献
2.
Inui M Suda M Kimura S Yasuda K Suzuki H Toda H Yamamoto S Okino S Suzuki N Yukawa H 《Applied microbiology and biotechnology》2008,77(6):1305-1316
A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase
(CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric,
high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement
under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate
as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing
the genes of a strict anaerobe, Clostridium acetobutylicum. 相似文献
3.
In Shigella and enteroinvasive Escherichia coli (EIEC), the etiologic agents of shigellosis in humans, the determinants responsible for entry of bacteria into and dissemination within epithelial cells are encoded by a virulence plasmid. To understand the evolution of the association between the virulence plasmid and the chromosome, we performed a phylogenetic analysis using the sequences of four chromosomal genes (trpA, trpB, pabB, and putP) and three virulence plasmid genes (ipaB, ipaD, and icsA) of a collection of 51 Shigella and EIEC strains. The phylogenetic tree derived from chromosomal genes showed a typical star phylogeny, indicating a fast diversification of Shigella and EIEC groups. Phylogenetic groups obtained from the chromosomal and plasmidic genes were similar, suggesting that the virulence plasmid and the chromosome share similar evolutionary histories. The few incongruences between the trees could be attributed to exchanges of fragments of different plasmids and not to the transfer of an entire plasmid. This indicates that the virulence plasmid was not transferred between the different Shigella and EIEC groups. These data support a model of evolution in which the acquisition of the virulence plasmid in an ancestral E. coli strain preceded the diversification by radiation of all Shigella and EIEC groups, which led to highly diversified but highly specialized pathogenic groups. 相似文献
4.
Using 2-dimensional gel electrophoresis, the Escherichia coli proteome response to a heat-shock stress was analyzed and a 1.6-fold increase of malate dehydrogenase was observed even under the heat-shock condition where the total number of soluble proteins decreased by about 5%. We subsequently demonstrated that, as an N-terminus fusion expression partner, malate dehydrogenase facilitated the folding of, and dramatically increased the solubility of, many aggregation-prone heterologous proteins in E. coli cytoplasm. Therefore, malate dehydrogenase is well suited for production of a biologically active fusion mutant of cutinase (Pseudomonas putida origin) that is currently of considerable to biotechnology and commercial industries. 相似文献
5.
Erkang Yin Yilin Le Jianjun Pei Weilan Shao Qiyin Yang 《World journal of microbiology & biotechnology》2008,24(2):275-280
According to the amino acid sequence, a codon-optimized xylanase gene (xynA1) from Thermomyces lanuginosus DSM 5826 was synthesized to construct the expression vector pHsh-xynA1. After optimization of the mRNA secondary structure in the translational initiation region of pHsh-xynA1, free energy of the 70 nt was changed from −6.56 to −4.96 cal/mol, and the spacing between AUG and the Shine-Dalgarno sequence
was decreased from 15 to 8 nt. The expression level was increased from 1.3 to 13% of total cell protein. A maximum xylanase
activity of 47.1 U/mL was obtained from cellular extract. The recombinant enzyme was purified 21.5-fold from the cellular
extract of Escherichia coli by heat treatment, DEAE-Sepharose FF column and t-Butyl-HIC column. The optimal temperature and pH were 65 °C and pH 6.0,
respectively. The purified enzyme was stable for 30 min over the pH range of 5.0–8.0 at 60 °C, and had a half-life of 3 h
at 65 °C. 相似文献
6.
A genetically engineered strain of Escherichia coli JM109 harboring the isopropanol-producing pathway consisting of five genes encoding four enzymes, thiolase, coenzyme A (CoA)
transferase, acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824, and primary–secondary alcohol dehydrogenase from C. beijerinckii NRRL B593, produced up to 227 mM of isopropanol from glucose under aerobic fed-batch culture conditions. Acetate production
by the engineered strain was approximately one sixth that produced by a control E. coli strain bearing an expression vector without the clostridial genes. These results demonstrate a functional isopropanol-producing
pathway in E. coli and consequently carbon flux from acetyl-CoA directed to isopropanol instead of acetate. This is the first report on isopropanol
production by genetically engineered microorganism under aerobic culture conditions. 相似文献
7.
8.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes
were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED)
pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed
and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the
DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis
pathway, but the glucose consumption rate could not be improved.
Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally. 相似文献
9.
The inhibitor of catalase 3-amino-1,2,4-triazole (AMT) was used to study the physiological role of catalase in the yeast Saccharomyces cerevisiae under starvation. It was shown that AMT at the concentration of 10 mM did not affect the growth of the yeast. In vivo and in vitro the degree of catalase inhibition by AMT was concentration- and time-dependent. Peroxisomal catalase in bakers' yeast was more sensitive to AMT than the cytosolic one. In vivo inhibition of catalase by AMT in S. cerevisiae caused a simultaneous decrease in glucose-6-phosphate dehydrogenase activity and an increase in glutathione reductase activity. At the same time, the level of protein carbonyls, a marker of oxidative modification, was not affected. Possible mechanisms compensating the negative effects caused by AMT inhibition of catalase are discussed. 相似文献
10.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was
eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no
structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor
substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential
growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively. 相似文献
11.
Mai Li Shanjing Yao Kazuyuki Shimizu 《World journal of microbiology & biotechnology》2007,23(4):573-580
The effect of poxB gene knockout on metabolism in Escherichia coli was investigated in the present paper based on the growth characteristics and the activities of the enzymes involved in the
central metabolic pathways. The absence of pyruvate oxidase reduced the glucose uptake rate and cell growth rate, and increased
O2 consumption and CO2 evolution. The enzyme assay results showed that although glucokinase activity increased, the flux through glycolysis was
reduced due to the down-regulation of the other glycolytic enzymes such as 6-phosphofructosekinase and fructose bisphosphate
aldolase in the poxB mutant. TCA cycle enzymes such as citrate synthase and malate dehydrogenase were repressed in the poxB mutant when the cells were cultivated in LB medium. The pyruvate oxidase mutation also resulted in the activation of glucose-6-phosphate
dehydrogenase and acetyl-CoA synthetase. All these results suggest that pyruvate oxidase is not only a stationary-phase enzyme
as previously known, and that the removal of the poxB gene affects the central metabolism at the enzyme level in E. coli. 相似文献
12.
H. M. El Shafey S. Ghanem A. Guyonvarch 《World journal of microbiology & biotechnology》2009,25(3):367-373
Nucleotide and amino acid sequences of Corynebacterium glutamicum recA genes, from GenBank, were compared in silico. On the basis of the identity found between sequences, two degenerate primers were designed on the two sides of the deduced open reading frame (ORF) of the recA gene. PCR experiments, for amplifying the recA ORF region, were done. pGEM®-T Easy vector was selected to be used for cloning PCR products. Then recA ORF was placed under the control of Escherichia coli hybrid trc promoter, in pKK388-1 vector. pKK388-1 vector, containing recA ORF, was transformed to E. coli DH5α ΔrecA (recombinant deficient strain), in an attempt to phenotypically complement it. Ultraviolet (u.v.) exposure experiments of the transformed and non-transformed E. coli DH5α ΔrecA cells revealed tolerance of transformed cells up to dose 0.24 J/cm2, while non-transformed cells tolerated only up to dose 0.08 J/cm2. It is concluded that phenotypic complementation of E. coli DH5α ΔrecA with recA ORF of C. glutamicum, could be achieved and RecA activity could be restored. 相似文献
13.
Natural plasmid transformation in<Emphasis Type="Italic">Escherichia coli</Emphasis> 总被引:3,自引:0,他引:3
Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli. 相似文献
14.
An effective protein expression system was constructed in Escherichia coli using the promoter of the tyrosine phenol-lyase (tpl) gene of Erwinia herbicola. This system involves a mutant form of the TyrR protein with an enhanced ability to activate tpl and the TutB protein with an ability to transport L-tyrosine (an inducer of Tpl). The highest expression level obtained for this system was more than twice that obtained for
the tac system, although it was lower than the level obtained for the T7 system, as revealed with the lac-reporter assay and SDS-polyacrylamide gel electrophoresis. 相似文献
15.
Antimicrobial efficacy of ultra-high-pressure (UHP) can be enhanced by application of additional hurdles. The objective of this study was to systematically assess the enhancement in pressure lethality by TBHQ treatment, against barotolerant strains of Escherichia coli O157:H7 and Listeria monocytogenes. Two L. monocytogenes Scott A and the barotolerant OSY-328 strain, and two E. coli O157:H7 strains, EDL-933 and its barotolerant mutant, OSY-ASM, were tested. Cell suspensions containing TBHQ (50 ppm, dissolved in dimethyl sulfoxide) were pressurized at 200 to 500 MPa (23+/-2 degrees C) for 1 min, plated on tryptose agar and enumerated the survivors. The TBHQ-UHP combination resulted in synergistic inactivation of both pathogens, with different degrees of lethality among strains. The pressure lethality threshold, for the combination treatment, was lower for E. coli O157:H7 (> or = 200 MPa) than for L. monocytogenes (> 300 MPa). E. coli O157:H7 strains were extremely sensitive to the TBHQ-UHP treatment, compared to Listeria strains. Interestingly, a control treatment involving DMSO-UHP combination consistently resulted in higher inactivation than that achieved by UHP alone, against all strains tested. However, sensitization of the pathogens to UHP by the additives (TBHQ in DMSO) was prominently greater for UHP than DMSO. Differences in sensitivities to the treatment between these two pathogens may be attributed to discrepancies in cellular structure or physiological functions. 相似文献
16.
An S-adenosylmethionine synthetase gene (metK) from Streptomyces spectabilis was cloned into an expression plasmid under the control of an inducible T7 promoter and introduced into a strain of Escherichia coli (BAP1(pBP130/pBP144)) capable of producing the polyketide product 6-deoxyerythronolide B (6-dEB). The metK coexpression in BAP1(pBP130/pBP144) improved the specific production of 6-dEB from 10.86 to 20.08 mg l−1
. In an effort to probe the reason for this improvement, a series of gene deletion and expression experiments were conducted
based on a metK metabolic pathway that branches between propionyl-CoA (a 6-dEB precursor) and autoinducer compounds. The deletion and expression
studies suggested that the autoinducer pathway had a larger impact on improved 6-dEB biosynthesis. Supporting these results
were experiments demonstrating the positive effect conditioned media (the suspected location of the autoinducer compounds)
had on 6-dEB production. Taken together, the results of this study show an increase in heterologous 6-dEB production concomitant
with heterologous metK gene expression and suggest that the mechanism for this improvement is linked to native autoinducer compounds. 相似文献
17.
De Mey M De Maeseneire S Soetaert W Vandamme E 《Journal of industrial microbiology & biotechnology》2007,34(11):689-700
Escherichia coli remains the best-established production organism in industrial biotechnology. However, when aerobic fermentation runs at
high growth rates, considerable amounts of acetate are accumulated as by-product. This by-product has negative effects on
growth and protein production. Over the last 20 years, substantial research efforts have been expended on reducing acetate
accumulation during aerobic growth of E. coli on glucose. From the onset it was clear that this quest would not be a simple or uncomplicated one. Simple deletion of the
acetate pathway reduced the acetate accumulation, but other by-products were formed. This mini review gives a clear outline
of these research efforts and their outcome, including bioprocess level approaches and genetic approaches. Recently, the latter
seems to have some promising results. 相似文献
18.
Production of <Emphasis Type="SmallCaps">l</Emphasis>-alanine by metabolically engineered <Emphasis Type="Italic">Escherichia coli</Emphasis> 总被引:2,自引:0,他引:2
Zhang X Jantama K Moore JC Shanmugam KT Ingram LO 《Applied microbiology and biotechnology》2007,77(2):355-366
Escherichia coli W was genetically engineered to produce l-alanine as the primary fermentation product from sugars by replacing the native d-lactate dehydrogenase of E. coli SZ194 with alanine dehydrogenase from Geobacillus stearothermophilus. As a result, the heterologous alanine dehydrogenase gene was integrated under the regulation of the native d-lactate dehydrogenase (ldhA) promoter. This homologous promoter is growth-regulated and provides high levels of expression during anaerobic fermentation.
Strain XZ111 accumulated alanine as the primary product during glucose fermentation. The methylglyoxal synthase gene (mgsA) was deleted to eliminate low levels of lactate and improve growth, and the catabolic alanine racemase gene (dadX) was deleted to minimize conversion of l-alanine to d-alanine. In these strains, reduced nicotinamide adenine dinucleotide oxidation during alanine biosynthesis is obligately
linked to adenosine triphosphate production and cell growth. This linkage provided a basis for metabolic evolution where selection
for improvements in growth coselected for increased glycolytic flux and alanine production. The resulting strain, XZ132, produced
1,279 mmol alanine from 120 g l−1 glucose within 48 h during batch fermentation in the mineral salts medium. The alanine yield was 95% on a weight basis (g
g−1 glucose) with a chiral purity greater than 99.5% l-alanine.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
19.
Hayakawa T Howlader MT Yamagiwa M Sakai H 《Applied microbiology and biotechnology》2008,80(6):1033-1037
Cry4Aa produced by Bacillus thuringiensis is a dipteran-specific toxin and is, therefore, of great interest for developing a bioinsecticide to control mosquitoes.
However, the expression of Cry4Aa in Escherichia coli is relatively low, which is a major disadvantage in its development as a bioinsecticide. In this study, to establish an effective
production system, a 1,914-bp modified gene (cry4Aa-S1) encoding Cry4Aa was designed and synthesized in accordance with the G + C content and codon preference of E. coli genes without altering the encoded amino acid sequence. The cry4Aa-S1 gene allowed a significant improvement in expression level, over five-fold, compared to that of the original cry4Aa gene. The product of the cry4Aa-S1 gene showed the same level of insecticidal activity against Culex pipiens larvae as that from cry4Aa. This suggested that unfavorable codon usage was one of the reasons for poor expression of cry4Aa in E. coli, and, therefore, changing the cry4Aa codons to accord with the codon usage in E. coli led to efficient production of Cry4Aa. Efficient production of Cry4Aa in E. coli can be a powerful measure to prepare a sufficient amount of Cry4Aa protein for both basic analytical and applied researches. 相似文献
20.
A two-parameter statistical model was used to predict the solubility of 96 putative virulence-associated proteins of Flavobacterium psychrophilum (CSF259-93) upon over expression in Escherichia coli. This analysis indicated that 88.5% of the F. psychrophilum proteins would be expressed as insoluble aggregates (inclusion bodies). These solubility predictions were verified experimentally
by colony filtration blot for six different F. psychrophilum proteins. A comprehensive analysis of codon usage identified over a dozen codons that are used frequently in F. psychrophilum, but that are rarely used in E. coli. Expression of F. psychrophilum proteins in E. coli was often associated with production of minor molecular weight products, presumably because of the codon usage bias between
these two organisms. Expression of recombinant protein in the presence of rare tRNA genes resulted in marginal improvements
in the expressed products. Consequently, Vibrio parahaemolyticus was developed as an alternative expression host because its codon usage is similar to F. psychrophilum. A full-length recombinant F. psychrophilum hemolysin was successfully expressed and purified from V. parahaemolyticus in soluble form, whereas this protein was insoluble upon expression in E. coli. We show that V. parahaemolyticus can be used as an alternate heterologous expression system that can remedy challenges associated with expression and production
of F. psychrophilum recombinant proteins. 相似文献