首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
l-Carnitine plays an important role in lipid metabolism by facilitating the transport of long-chain fatty acids across the mitochondrial inner membrane followed by fatty acid beta-oxidation. It is known that l-carnitine exists as a zwitterion and that member of the OCTN family play an important role in its transport. The aims of this study were to characterize l-carnitine transport in the intestine by using Caco-2 cells and to elucidate the effects of levofloxacin (LVFX) and grepafloxacin (GPFX), which are zwitterionic drugs, on l-carnitine uptake. Kinetic analysis showed that the half-saturation Na+ concentration, Hill coefficient and Km value of l-carnitine uptake in Caco-2 cells were 10.3 ± 4.5 mM, 1.09 and 8.0 ± 1.0 μM, respectively, suggesting that OCTN2 mainly transports l-carnitine. LVFX and GPFX have two pKa values and the existence ratio of their zwitterionic forms is higher under a neutral condition than under an acidic condition. Experiments on the inhibitory effect of LVFX and GPFX on l-carnitine uptake showed that LVFX and GPFX inhibited l-carnitine uptake more strongly at pH 7.4 than at pH 5.5. It was concluded that the zwitterionic form of drugs plays an important role in inhibition of OCTN2 function.  相似文献   

2.
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na(+)-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na(+)-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent K(m)=18.7 microM; V(max)=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent K(m)=11.5 microM and V(max)=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na(+)-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na(+)-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.  相似文献   

3.
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na+-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na+-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent Km=18.7 μM; Vmax=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent Km=11.5 μM and Vmax=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na+-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na+-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.  相似文献   

4.
Campylobacter jejuni and Mycobacterium paratuberculosis have been implicated in the pathogenesis of Crohn's disease. The presence of bacterial metabolites in the colonic lumen causing a specific breakdown of fatty acid oxidation in colonic epithelial cells has been suggested as an initiating event in inflammatory bowel disease (IBD). l-Carnitine is a small highly polar zwitterion that plays an essential role in fatty acid oxidation and ATP generation in intestinal bioenergetic metabolism. The organic cation/carnitine transporters, OCTN1 and OCTN2, function primarily in the transport of l-carnitine and elimination of cationic drugs in the intestine. High-resolution linkage disequilibrium mapping has identified a region of about 250kb in size at 5q31 (IBD5) encompassing the OCTN1 and -2 genes, to confer susceptibility to Crohn's disease. Recently, two variants in the OCTN1 and OCTN2 genes have been shown to form a haplotype which is associated with susceptibility to Crohn's. We show that OCTN1 and OCTN2 are strongly expressed in target areas for IBD such as ileum and colon. Further, we have now identified a nine amino acid epitope shared by this functional variant of OCTN1 (Leu503Phe) (which decreases the efficiency of carnitine transport), and by C. jejuni (9 aa) and M. paratuberculosis (6 aa). The prevalence of this variant of OCTN1 (Phe503:Leu503) is 3-fold lower in unaffected individuals of Jewish origin (1:3.44) compared to unaffected individuals of non-Jewish origin (1:1). We hypothesize that a specific antibody raised to this epitope during C. jejuni or M. paratuberculosis enterocolitis would cross-react with the intestinal epithelial cell functional variant of OCTN1, an already less efficient carnitine transporter, leading to an impairment of mitochondrial beta-oxidation which may then serve as an initiating event in IBD. This impairment of l-carnitine transport by OCTN1 may respond to high-dose l-carnitine therapy.  相似文献   

5.
Spermatozoan maturation, motility, and fertility are, in part, dependent upon the progressive increase in epididymal and spermatozoal carnitine, critical for mitochondrial fatty acid oxidation, as sperm pass from the caput to the cauda of the epididymis. We demonstrate that the organic cation/carnitine transporters, OCTN1, OCTN2, and OCTN3, are expressed in sperm as three distinct proteins with an expected molecular mass of 63 kDa, using Western blot analysis and our transporter-specific antibodies. Carnitine uptake studies in normal control human sperm samples further support the presence of high-affinity (OCTN2) carnitine uptake (K(m) of 3.39+/-1.16 microM; V(max) of 0.23+/-0.14 pmol/min/mg sperm protein; and mean+/-SD; n=12), intermediate-affinity (OCTN3) carnitine uptake (K(m) of 25.9+/-14.7 microM; V(max) of 1.49+/-1.03 pmol/min/mg protein; n=26), and low-affinity (OCTN1) carnitine uptake (K(m) of 412.6+/-191 microM; V(max) of 32.7+/-20.5 pmol/min/mg protein; n=18). Identification of individuals with defective sperm carnitine transport may provide potentially treatable etiologies of male infertility, responsive to L-carnitine supplementation.  相似文献   

6.
l-Carnitine is an essential component of mitochondrial fatty acid beta-oxidation and plays a pivotal role in the maturation of spermatozoa within the male reproductive tract. Epididymal plasma contains the highest levels of l-carnitine found in the human body, and initiation of sperm motility occurs in parallel to l-carnitine increase in the epididymal lumen. Using a specific carrier, epididymal epithelium secretes l-carnitine into the lumen by an active transport mechanism; however, the structure-activity relationship comprising the carnitine-permeation pathway is poorly understood. We discovered a novel carnitine transporter (CT2) specifically located in human testis. Analyzing the primary structure of CT2 revealed that it is phylogenetically located between the organic cation transporter (OCT/OCTN) and anion transporter (OAT) families. Hence, CT2 represents a novel transporter family. When expressed in Xenopus oocytes, CT2 mediates the high affinity transport of l-carnitine but does not accept mainstream OCT/OCTN cationic or OAT anionic substrates. We synthesized and tested various carnitine-related compounds and investigated the physicochemical properties of substrate recognition by semi-empirical computational chemistry. The data suggest that the quaternary ammonium cation bulkiness and relative hydrophobicity be the most important factors that trigger CT2-substrate interactions. Immunohistochemistry showed that the CT2 protein is located in the luminal membrane of epididymal epithelium and within the Sertoli cells of the testis. The identification of CT2 represents an interesting evolutionary link between OCT/OCTNs and OATs, as well as provides us with an important insight into the maturation of human spermatozoa.  相似文献   

7.
8.
9.
The aim of this study was to investigate expression and relative contribution of human thiamin transporter (hTHTR)-2 toward overall carrier-mediated thiamin uptake by human intestinal epithelial cells. Northern blot analysis showed that the message of the hTHTR-2 is expressed along the native human gastrointestinal tract with highest expression being in the proximal part of small intestine. hTHTR-2 protein was found, by Western blot analysis, to be expressed at the brush-border membrane (BBM), but not at the basolateral membrane, of native human enterocytes. This pattern of expression was confirmed in studies using a fusion protein of hTHTR-2 with the enhanced green fluorescent protein (hTHTR2-EGFP) expressed in living Caco-2 cells grown on filter. Pretreating Caco-2 cells (which also express the hTHTR-2 at RNA and protein levels) with hTHTR-2 gene-specific small interfering RNA (siRNA) led to a significant (P < 0.01) and specific inhibition (48%) in carrier-mediated thiamin uptake. Similarly, pretreating Caco-2 cells with siRNA that specifically target hTHTR-1 (which is expressed in Caco-2 cells) also significantly (P < 0.01) and specifically inhibited (by 56%) carrier-mediated thiamin uptake. When Caco-2 cells were pretreated with siRNAs against both hTHTR-2 and hTHTR-1 genes, an almost complete inhibition in carrier-mediated thiamin uptake was observed. These results show that the message of hTHTR-2 is expressed along the human gastrointestinal tract and that expression of its protein in intestinal epithelia is mainly localized to the apical BBM domain. In addition, results show that this transporter plays a significant role in carrier-mediated thiamin uptake in human intestine.  相似文献   

10.
L-Carnitine plays an important role in lipid metabolism by facilitating the transport of long-chain fatty acids across the mitochondrial inner membrane followed by fatty acid beta-oxidation. It is known that L-carnitine exists as a zwitterion and that member of the OCTN family play an important role in its transport. The aims of this study were to characterize L-carnitine transport in the intestine by using Caco-2 cells and to elucidate the effects of levofloxacin (LVFX) and grepafloxacin (GPFX), which are zwitterionic drugs, on L-carnitine uptake. Kinetic analysis showed that the half-saturation Na+ concentration, Hill coefficient and Km value of L-carnitine uptake in Caco-2 cells were 10.3 +/- 4.5 mM, 1.09 and 8.0 +/- 1.0 microM, respectively, suggesting that OCTN2 mainly transports L-carnitine. LVFX and GPFX have two pKa values and the existence ratio of their zwitterionic forms is higher under a neutral condition than under an acidic condition. Experiments on the inhibitory effect of LVFX and GPFX on L-carnitine uptake showed that LVFX and GPFX inhibited L-carnitine uptake more strongly at pH 7.4 than at pH 5.5. It was concluded that the zwitterionic form of drugs plays an important role in inhibition of OCTN2 function.  相似文献   

11.
Primary carnitine deficiency is a disorder of fatty acid oxidation caused by mutations in the Na+-dependent carnitine/organic cation transporter OCTN2. Studies with tyrosyl group-modifying reagents support the involvement of tyrosine residues in Na+ binding by sodium-coupled transporters. Here we report two new patients with carnitine deficiency caused by mutations affecting tyrosyl residues (Y447C and Y449D) close to a residue (Glu-452) previously shown to affect sodium stimulation of carnitine transport. Kinetic analysis indicated that the Y449D substitution, when expressed in Chinese hamster ovary cells, increased the concentration of sodium required to half-maximally stimulate carnitine transport from 14.8 +/- 1.8 to 34.9 +/- 5.8 mM (p<0.05), whereas Y447C completely abolished carnitine transport. Substitution of these tyrosine residues with phenylalanine restored normal carnitine transport in Y449F but resulted in markedly impaired carnitine transport by Y447F. This was associated with an increase in the concentration of sodium required to half-maximally stimulate carnitine transport to 57.8 +/- 7.4 mM (p<0.01 versus normal OCTN2). The Y447F and Y449D mutant transporters retained their ability to transport the organic cation tetraethylammonium indicating that their effect on carnitine transport was specific and likely associated with the impaired sodium stimulation of carnitine transport. By contrast, the Y447C natural mutation abolished the transport of organic cations in addition to carnitine. Confocal microscopy of OCTN2 transporters tagged with green fluorescent protein indicated that the Y447C mutant transporters failed to reach the plasma membrane, whereas Y447F, Y449D, and Y449F had normal membrane localization. These natural mutations identify tyrosine residues possibly involved in coupling the sodium electrochemical gradient to transmembrane solute transfer in the sodium-dependent co-transporter OCTN2.  相似文献   

12.
Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation characterized by hypoketotic hypoglycemia and skeletal and cardiac myopathy. It is caused by mutations in the Na+-dependent organic cation transporter, OCTN2. To define the domains involved in carnitine recognition, we evaluated chimeric transporters created by swapping homologous domains between OCTN1, which does not transport carnitine, and OCTN2. Substitution of the C terminus of OCTN2 (amino acid residues 342-557) with the corresponding residues of OCTN1 completely abolished carnitine transport. The progressive substitution of the N terminus of OCTN2 with OCTN1 resulted in a decrease in carnitine transport associated with a progressive increase in the Km toward carnitine from 3.9 +/- 0.5 to 141 +/- 19 microM. The largest drop in carnitine transport (and increase in Km toward carnitine) was observed with the substitution of residues 341-454 of OCTN2. An additional chimeric transporter (CHIM-9) in which only residues 341-454 of OCTN2 were substituted by OCTN1 had markedly reduced carnitine transport, with an elevated Km toward carnitine (63 +/- 5 microM). Site-directed mutagenesis and introduction of residues nonconserved between OCTN1 and OCTN2 in the OCTN2 cDNA indicated that the R341A, L409W, L424Y, and T429I substitutions significantly decreased carnitine transport. Single substitutions did not increase the Km toward carnitine. By contrast, the combination of three of these substitutions (R341W + L409W + T429I) greatly decreased carnitine transport and increased the Km toward carnitine (20.2 +/- 4.5 microm). The Arg-341, Leu-409, and Thr-429 residues are all located in predicted transmembrane domains. Involvement of these residues in carnitine transport was further supported by the partial restoration of carnitine transport by the introduction of these OCTN2 residues in the OCTN1 portion of CHIM-9. These studies indicate that multiple domains of the OCTN2 transporter are required for carnitine transport and identify transmembrane residues important for carnitine recognition.  相似文献   

13.
Immunological assays and transport measurements in apical membrane vesicles revealed that the apical membrane of rat kidney cortex and medulla presents OCTN2 and OCTN3 proteins and transports L ‐[3H]‐carnitine in a Na+‐dependent and ‐independent manner. OCTN2 mediates the Na+/L ‐carnitine transport activity measured in medulla because (i) the transport showed the same characteristics as the cortical Na+/L ‐carnitine transporter and (ii) the medulla expressed OCTN2 mRNA and protein. The Na+‐independent L ‐carnitine transport activity appears to be mediated by both OCTN2 and OCTN3 since: (i) Na+‐independent L ‐carnitine uptake was inhibited by both, anti‐OCTN2 and anti‐OCTN3 antibodies, (ii) kinetics studies revealed the involvement of a high‐ and a low‐affinity transport systems, and (iii) Western and immunohistochemistry studies revealed that OCTN3 protein is located at the apical membrane of the kidney epithelia. The Na+‐independent L ‐carnitine uptake exhibited trans‐stimulation by intravesicular L ‐carnitine or betaine. This trans‐stimulation was inhibited by anti‐OCTN3 antibody, but not by anti‐OCTN2 antibody, indicating that OCTN3 can function as an L ‐carnitine/organic compound exchanger. This is the first report showing a functional apical OCTN2 in the renal medulla and a functional apical OCTN3 in both renal cortex and medulla. J. Cell. Physiol. 223: 451–459, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Carnitine is essential for beta-oxidation of fatty acids, and a defect of cell membrane transport of carnitine leads to fatal systemic carnitine deficiency. We have already shown that a defect of the organic cation/carnitine transporter OCTN2 is a primary cause of systemic carnitine deficiency. In the present study, we further isolated and characterized new members of the OCTN family, OCTN1 and -3, in mice. All three members were expressed commonly in kidney, and OCTN1 and -2 were also expressed in various tissues, whereas OCTN3 was characterized by predominant expression in testis. When their cDNAs were transfected into HEK293 cells, the cells exhibited transport activity for carnitine and/or the organic cation tetraethylammonium (TEA). Carnitine transport by OCTN1 and OCTN2 was Na(+)-dependent, whereas that by OCTN3 was Na(+)-independent. TEA was transported by OCTN1 and OCTN2 but not by OCTN3. The relative uptake activity ratios of carnitine to TEA were 1.78, 11.3, and 746 for OCTN1, -2, and -3, respectively, suggesting high specificity of OCTN3 for carnitine and significantly lower carnitine transport activity of OCTN1. Thus, OCTN3 is unique in its limited tissue distribution and Na(+)-independent carnitine transport, whereas OCTN1 efficiently transported TEA with minimal expression of carnitine transport activity and may have a different role from other members of the OCTN family.  相似文献   

15.
Maternofetal transport of L-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that L-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km = 11.09 ± 1.32 µM; Vmax = 41.75 ± 0.94 pmol·mg protein–1·min–1), and was unchanged over the pH range from 5.5 to 8.5. L-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of L-carnitine, including D-carnitine, acetyl-D,L-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-L-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for L-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans. membrane transport; valproate; maternofetal; xenobiotics; acylcarnitine  相似文献   

16.
Transport of L-[3H]carnitine and acetyl-L-[3H]carnitine at the blood-brain barrier (BBB) was examined by using in vivo and in vitro models. In vivo brain uptake of acetyl-L-[3H]carnitine, determined by a rat brain perfusion technique, was decreased in the presence of unlabeled acetyl-L-carnitine and in the absence of sodium ions. Similar transport properties for L-[3H]carnitine and/or acetyl-L-[3H]carnitine were observed in primary cultured brain capillary endothelial cells (BCECs) of rat, mouse, human, porcine and bovine, and immortalized rat BCECs, RBEC1. Uptakes of L-[3H]carnitine and acetyl-L-[3H]carnitine by RBEC1 were sodium ion-dependent, saturable with K(m) values of 33.1 +/- 11.4 microM and 31.3 +/- 11.6 microM, respectively, and inhibited by carnitine analogs. These transport properties are consistent with those of carnitine transport by OCTN2. OCTN2 was confirmed to be expressed in rat and human BCECs by an RT-PCR method. Furthermore, the uptake of acetyl-L-[3H]carnitine by the BCECs of juvenile visceral steatosis (jvs) mouse, in which OCTN2 is functionally defective owing to a genetical missense mutation of one amino acid residue, was reduced. The brain distributions of L-[3H]carnitine and acetyl-L-[3H]carnitine in jvs mice were slightly lower than those of wild-type mice at 4 h after intravenous administration. These results suggest that OCTN2 is involved in transport of L-carnitine and acetyl-L-carnitine from the circulating blood to the brain across the BBB.  相似文献   

17.
Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL(uptake)) of l-[(3)H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL(uptake) of [(14)C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL(uptake) of l-[(3)H]carnitine in the contracting muscles increased 1.4-1.7-fold as compared to that in the contralateral resting muscles (p<0.05). The CL(uptake) of [(14)C]IAP was much higher than that of l-[(3)H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p<0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.  相似文献   

18.
Among the organic cation transporters, OCTN2 is identified as the most important carnitine transporter owing to the ability to transport carnitine. Although the OCTN2 is previously found in various tissues, there have been no reports showing the OCTN2 in the pancreas. In this study, we examined the expression and localization of OCTN2 in the mouse pancreas by the aid of an in situ hybridization technique and immunohistochemistry with anti-OCTN2 antibody. As a result, the OCTN2 expression was found in the A-cells for the first time. OCTN2 was not expressed in B-cells, notwithstanding that the metabolism of long-chain fatty acids, which are transported into the mitochondria with the help of carnitine, was expected for fatty acid-stimulated insulin secretion. Thus, this study suggests the possibility of carnitine uptake in the pancreatic A-cells through OCTN2 and implies the presence of carnitine transporter(s) other than OCTN2 in the B-cell.  相似文献   

19.
L-carnitine is absorbed in the intestinal tract via the carnitine transporter OCTN2 and the amino acid transporter ATB(0,+). Loss-of-function mutations in OCTN2 may be associated with inflammatory bowel disease (IBD), suggesting a role for carnitine in intestinal/colonic health. In contrast, ATB(0,+) is upregulated in bowel inflammation. Butyrate, a bacterial fermentation product, is beneficial for prevention/treatment of ulcerative colitis. Butyryl-L-carnitine (BC), a butyrate ester of carnitine, may have potential for treatment of gut inflammation, since BC would supply both butyrate and carnitine. We examined the transport of BC via ATB(0,+) to determine if this transporter could serve as a delivery system for BC. We also examined the transport of BC via OCTN2. Studies were done with cloned ATB(0,+) and OCTN2 in heterologous expression systems. BC inhibited ATB(0,+)-mediated glycine transport in mammalian cells (IC(50), 4.6 +/- 0.7 mM). In Xenopus laevis oocytes expressing human ATB(0,+), BC induced Na(+) -dependent inward currents under voltage-clamp conditions. The currents were saturable with a K(0.5) of 1.4 +/- 0.1 mM. Na(+) activation kinetics of BC-induced currents suggested involvement of two Na(+) per transport cycle. BC also inhibited OCTN2-mediated carnitine uptake (IC(50), 1.5 +/- 0.3 microM). Transport of BC via OCTN2 is electrogenic, as evidenced from BC-induced inward currents. These currents were Na(+) dependent and saturable (K(0.5), 0.40 +/- 0.02 microM). We conclude that ATB(0,+) is a low-affinity/high-capacity transporter for BC, whereas OCTN2 is a high-affinity/low-capacity transporter. ATB(0,+) may mediate intestinal absorption of BC when OCTN2 is defective.  相似文献   

20.
l-Carnitine is actively transported into Girardi human heart cells, an established cell line from human heart. The present study was undertaken to investigate the effect of different concentrations of l-carnitine in the growth medium on the rate of uptake of l-[3H]carnitine.Increasing the concentration of l-carnitine from 2 to 100 μmol/1 in the growth medium of the cells, increased the rate of uptake of l-[3H]carnitine by about 50%. The maximal effect was reached after approx. 72 h incubation. The increase in rate seemed to be caused by synthesis of increased number of carriers, as judged by the increase in V with unchanged apparent Km for the transport process. This effect of l-carnitine could be inhibited by cycloheximide, indicating the dependence on intact protein synthesis. The morphology of the cells was studied by electron microscopy. No myofilaments were found, thus the cells are dedifferentiated and no longer typical muscular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号