首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most commonly measured marker of oxidative DNA damage is 8-oxo-7,8-dihydroguanine (8-oxoGua) or its deoxyribonucleoside (8-oxodGuo). Published estimates of the concentration of 8-oxoGua/8-oxodGuo in DNA of normal human cells vary over a range of three orders of magnitude. Analysis by chromatographic methods (GC-MS, HPLC with electrochemical detection (ECD) or HPLC-MS/MS) is beset by the problem of adventitious oxidation of guanine during sample preparation. An alternative approach, based on the use of the DNA repair enzyme formamidopyrimidine DNA N-glycosylase (FPG) to make breaks in the DNA at sites of the oxidised base, gives much lower values. ESCODD, the European Standards Committee on Oxidative DNA Damage, has been testing the ability of different laboratories using a variety of methods to measure 8-oxoGua in standard samples of 8-oxodGuo, calf thymus DNA, pig liver, oligonucleotides, and HeLa cells, and in lymphocytes isolated from blood of volunteers. HPLC-ECD is capable of measuring 8-oxodGuo induced experimentally in calf thymus DNA or HeLa cells with high accuracy. However, there is no sign of consensus over the background level of this damage, suggesting that, even though standard extraction procedures were used, variable oxidation of Gua is still occurring. GC-MS failed to detect a dose response of induced 8-oxoGua and cannot be regarded as a reliable method for measuring low levels of damage. HPLC-MS/MS as yet has not proved capable of measuring low levels of oxidative DNA damage. FPG-based methods seem to be less prone to the artefact of additional oxidation. Although they can be used quantitatively, they require careful calibration and standardisation if they are to be used in human biomonitoring. The background level of DNA oxidation in normal human cells is likely to be around 0.3-4.2 8-oxoGua per 10(6) Gua. An effort should be made to develop alternative, validated methods for estimating oxidative DNA damage.  相似文献   

2.
《Free radical research》2002,36(3):239-245
The aim of ESCODD, a European Commission funded Concerted Action, is to improve the precision and accuracy of methods for measuring 8-oxo-7,8-dihydroguanine (8-oxoGua) or the nucleoside (8-oxodG). On two occasions, participating laboratories received samples of different concentrations of 8-oxodG for analysis. About half the results returned (for 8-oxodG) were within 20% of the median values. Coefficients of variation (for three identical samples) were commonly around 10%. A sample of calf thymus DNA was sent, dry, to all laboratories. Analysis of 8-oxoGua/8-oxodG in this sample was a test of hydrolysis methods. Almost half the reported results were within 20% of the median value, and half obtained a CVof less than 10%. In order to test sensitivity, as well as precision, DNA was treated with photosensitiser and light to introduce increasing amounts of 8-oxoGua and samples were sent to members. Median values calculated from all returned results were 45.6 (untreated), 53.9, 60.4 and 65.6 8-oxoGua/10(6) Gua; only seven laboratories detected the increase over the whole range, while all but one detected a dose response over two concentration intervals. Results in this trial reflect a continuing improvement in precision and accuracy. The next challenge will be the analysis of 8-oxodG in DNA isolated from cells or tissue, where the concentration is much lower than in calf thymus DNA.  相似文献   

3.
The aim of ESCODD, a European Commission funded Concerted Action, is to improve the precision and accuracy of methods for measuring 8-oxo-7,8-dihydroguanine (8-oxoGua) or the nucleoside (8-oxodG). On two occasions, participating laboratories received samples of different concentrations of 8-oxodG for analysis. About half the results returned (for 8-oxodG) were within 20% of the median values. Coefficients of variation (for three identical samples) were commonly around 10%. A sample of calf thymus DNA was sent, dry, to all laboratories. Analysis of 8-oxoGua/8-oxodG in this sample was a test of hydrolysis methods. Almost half the reported results were within 20% of the median value, and half obtained a CV of less than 10%. In order to test sensitivity, as well as precision, DNA was treated with photosensitiser and light to introduce increasing amounts of 8-oxoGua and samples were sent to members. Median values calculated from all returned results were 45.6 (untreated), 53.9, 60.4 and 65.6 8-oxoGua/10 6 Gua; only seven laboratories detected the increase over the whole range, while all but one detected a dose response over two concentration intervals. Results in this trial reflect a continuing improvement in precision and accuracy. The next challenge will be the analysis of 8-oxodG in DNA isolated from cells or tissue, where the concentration is much lower than in calf thymus DNA.  相似文献   

4.
5.
Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on 8-oxoGua excretion or major change in cancer risk. 8-OxoGua excretion has been associated with exposure to air pollution, toxic metals, tobacco smoke and low plasma antioxidant levels, whereas fruit and vegetable intake or dietary interventions showed no association. In rodent studies some types of feed may be source of 8-oxoGua in collected urine. Of cancer therapies, cisplatin increased 8-oxoGua excretion, whereas radiotherapy only showed such effects in experimental animals. Case-control studies found high excretion of 8-oxoGua in relation to cancer, dementia and celiac disease but not hemochromatosis, although associations could be a consequence rather than reflecting causality of disease. One prospective study found increased risk of developing lung cancer among non-smokers associated with high excretion of 8-oxoGua. Urinary excretion of 8-oxoGua is a promising biomarker of oxidatively damaged DNA.  相似文献   

6.
8-Oxo-7,8-dihydroguanine (8-oxoGua), an important biomarker of DNA damage in oxidatively generated stress, is highly reactive towards further oxidation. Much work has been carried out to investigate the oxidation products of 8-oxoGua by one-electron oxidants, singlet oxygen, and peroxynitrite. This report details for the first time, the iron- and copper-mediated Fenton oxidation of 8-oxoGua and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). Oxidised guanidinohydantoin (Gh(ox)) was detected as the major product of oxidation of 8-oxoGua with iron or copper and hydrogen peroxide, both at pH 7 and pH 11. Oxaluric acid was identified as a final product of 8-oxoGua oxidation. 8-oxodGuo was subjected to oxidation under the same conditions as 8-oxoGua. However, dGh(ox) was not generated. Instead, spiroiminodihydantoin (Sp) was detected as the major product for both iron and copper mediated oxidation at pH 7. It was proposed that the oxidation of 8-oxoGua was initiated by its one-electron oxidation by the metal species, which leads to the reactive intermediate 8-oxoGua (+), which readily undergoes further oxidation. The product of 8-oxoGua and 8-oxodGuo oxidation was determined by the 2'-deoxyribose moiety of the 8-oxodGuo, not whether copper or iron was the metal involved in the oxidation.  相似文献   

7.
We have analyzed the recognition by various repair endonucleases of DNA base modifications induced by three oxidants, viz. [4-(tert-butyldioxycarbonyl)benzyl]triethylammonium chloride (BCBT), a photochemical source of tert-butoxyl radicals, disodium salt of 1,4-etheno-2,3-benzodioxin-1,4-dipropanoic acid (NDPO(2)), a chemical source of singlet oxygen, and riboflavin, a type-I photosensitizer. The base modifications induced by BCBT, which were previously shown to be mostly 7,8-dihydro-8-oxoguanine (8-oxoGua) residues, were recognized by Fpg and Ogg1 proteins, but not by endonuclease IIII, Ntg1 and Ntg2 proteins. In the case of singlet oxygen induced damage, 8-oxoGua accounted for only 35% of the base modifications recognized by Fpg protein. The remaining Fpg-sensitive modifications were not recognized by Ogg1 protein and relatively poor by endonuclease III, but they were relatively good substrates of Ntg1 and Ntg2. In the case of the damage induced by photoexcited riboflavin, the fraction of Fpg-sensitive base modifications identified as 8-oxoGua was only 23%. In contrast to the damage induced by singlet oxygen, the remaining lesions were not only recognized by Ntg1 and Ntg2 proteins and (relatively poor) by endonuclease III, but also by Ogg1 protein. The analysis of the mutations observed after transfection of modified plasmid pSV2gpt into Escherichia coli revealed that all agents induced near exclusively GC-->TA and GC-->CG transversions, the numbers of which were correlated with the numbers of 8-oxoGua residues and Ntg-sensitive modifications, respectively. In conclusion, both singlet oxygen and the type-I photosensitizer riboflavin induce predominantly oxidative guanine modifications other than 8-oxoGua, which most probably give rise to GC-->CG transversions and in which eukaryotic cells are substrates of Ntg1 and Ntg2 proteins.  相似文献   

8.
Homopolydeoxyribonucleotides, poly[dGuo], poly[dAdo], poly[dThd], and poly[dCyd], and calf thymus single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) aqueous solutions previously exposed to gamma radiation doses between 2 and 35 Gy, were studied by differential pulse voltammetry using a glassy carbon electrode. The interpretation of the voltammetric data was also supported by the electrophoretic migration profile obtained for the same ssDNA and dsDNA gamma-irradiated samples by nondenaturing agarose gel electrophoresis. The generation of 8-oxo-7,8-dihydroguanine, 2,8-dihydroxyadenine, 5-formyluracil, base-free sites, and single- and double-stranded breaks in the gamma-irradiated DNA samples was detected voltammetrically, with the amount depending on the irradiation time. It was found that the current peaks obtained for 8-oxoguanine increase linearly with the radiation dose applied to the nucleic acid sample, and values between 8 and 446 8-oxo-7,8-dihydroguanine (8-oxoGua) per 10(6) guanines per Gy were obtained according to the nucleic acid sample. The results showed that voltammetry can be used for monitoring and simultaneously characterizing different kinds of DNA damage caused by gamma radiation exposure.  相似文献   

9.
Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after exposure, from bedtime until the next morning. We measured the levels of DNA strand breaks (SB), oxidized purines as formamidopyrimidine-DNA-glycosylase (FPG) sites and activity of oxoguanine glycosylase 1 (hOGG1) in PBMC by the comet assay, whereas mRNA levels of hOGG1, nucleoside diphosphate linked moiety X-type motif 1 (hNUDT1) and heme oxygenase 1 (hHO1) were determined by real-time RT-PCR. The excretion of 8-oxo-7,8-dihydro-oxoguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine was measured by high performance liquid chromatography purification followed by gas chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change significantly. Our findings support that exposure to wood smoke causes systemic effects, although we could not demonstrate genotoxic effects, possibly explained by enhanced repair and timing of sampling.  相似文献   

10.
In this review, we present various techniques, currently applied in many laboratories, which are useful in the detection of “environmentally”-induced damage to DNA. These techniques include: (a) chromatographic methods, which allow determination of chemical changes within DNA, be they formation of adducts with or oxidation of bases in DNA; (b) electrophoretic methods, which facilitate finding the site(s) in DNA where that chemical modification occurred; and (c) immunological assays, which help to detect DNA damage using externally produced antibodies that recognize the specific chemical changes in DNA or its fragments, as well as by detection of autoantibodies that develop in response to environmental exposures of animals and humans.  相似文献   

11.
One of the major biomarkers of oxidative stress and oxidative damage of cellular DNA is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is more easily oxidized than guanine to diverse oxidative products. In this work, we have investigated further oxidative transformations of 8-oxoGua in single- and double-stranded oligonucleotides to the dehydroguanidinohydantoin, oxaluric acid, and diastereomeric spiroiminodihydantoin lesions. The relative distributions of these end products were explored by a combined kinetic laser spectroscopy and mass spectrometry approach and are shown to depend markedly on the presence of superoxide radical anions. The 8-oxaGua radicals were produced by one-electron oxidation of 8-oxoGua by 2-aminopurine radicals generated by the two-photon ionization of 2-aminopurine residues site specifically positioned in 5'-d(CC[2-aminopurine]TC[8-oxoGua]CTACC). The hydrated electrons also formed in the photoionization process were trapped by dissolved molecular oxygen thus producing superoxide. A combination reaction between the 8-oxoGua and superoxide radicals occurs with the rate constant of (1.3 +/- 0.2) x 10(8) m(-1) s(-1) and (1.0 +/- 0.5) x 10(8) m(-1) s(-1) in single- and double-stranded DNA, respectively. The major end products of this reaction are the dehydroguanidinohydantoin lesions that slowly hydrolyze to oxaluric acid residues. In the presence of Cu,Zn-superoxide dismutase, an enzyme that induces the rapid catalytic dismutation of superoxide to the less reactive H(2)O(2) and O(2), the yields of the dehydroguanidinohydantion lesions become negligible. Under these conditions, the 8-oxoGua radicals do not exhibit any observable reactivities with oxygen (k < 10(2) m(-1) s(-1)), decay on the time interval of several seconds, and the major reaction products are the spiroiminodihydantoin lesions. The possible biological implications of the 8-oxoGua oxidation are discussed.  相似文献   

12.
《Free radical research》2013,47(6-7):511-516
Abstract

The molecule 8-oxo-7,8-dihydroguanine (8-oxoGua), an oxidized form of guanine, can pair with adenine or cytosine during nucleic acid synthesis. RNA sequences that contain 8-oxoGua cause translational errors that lead to the synthesis of abnormal proteins. Human Nudix type 5 (NUDT5), a MutT-related protein, catalyzes the hydrolysis of 8-oxoGDP to 8-oxoGMP, thereby preventing the misincorporation of 8-oxoGua into RNA. To investigate the biological roles of NUDT5 in human fibroblast cells, we established cell lines with decreased levels of NUDT5 expression. In NUDT5 knockdown cells, the RNA oxidation levels were significantly higher, the rates of cellular senescence and cell apoptosis were significantly increased, and the cell viability was significantly decreased in comparison with control cells. These results suggested that the NUDT5 protein could play significant roles in the prevention of RNA oxidation and survival in human fibroblast cells.  相似文献   

13.
A wide variety of oxidative DNA lesions are present in living cells. One of the best known lesions of this type is 8-oxoguanine (8-oxoGua) which has been shown to have mutagenic properties. An influence of antioxidative vitamins and labile iron pool on the background level of 8-oxoGua in cellular DNA is discussed and oxidative damage to free nucleotide pool as a possible source of 8-oxo-2'-deoxyguanosine in DNA and urine is described. An involvement of 8-oxoGua in the origin and/or progression of cancer is reviewed. It is concluded that a severe oxidative stress manifested as a high level of 8-oxoGua in cellular DNA as well as in urine of cancer patients is a consequence of development of many types of cancer. Although at present it is impossible to answer directly the question concerning involvement of oxidative DNA damage in cancer etiology it is likely that oxidative DNA base modifications may serve as a source of mutations that initiate carcinogenesis (i.e. they may be causal factors responsible for the process).  相似文献   

14.
We are attempting to resolve some of the problems encountered in measuring 8-hydroxy-2'-deoxyguanosine (8-oxodG) in human cellular DNA as a marker of oxidative stress. Samples of authentic 8-oxodG were distributed, and participating laboratories undertook to analyse this material within a specified period. Most HPLC procedures gave values for 8-oxodG within ±40% of the target, as did two of four GC-MS procedures, and both LC-MS-MS methods. Calf thymus DNA samples containing increasing amounts of 8-oxodG were also distributed for analysis. Fewer than half the procedures tested were able to detect the dose response; those that were successful tended to be procedures with low coefficients of variation. For the analysis of 8-oxodG in human cells, where it is likely to be present at much lower concentrations than in the calf thymus DNA, it is crucial to reduce analytical variation to a minimum; a coefficient of variation of less than 10% should be the aim, to give reasonable precision. HPLC with amperometric electrochemical detection is not recommended, as it is less sensitive than coulometric detection. Immunological detection, 32P-postlabelling and LC-MS-MS are alternative approaches to measurement of 8-oxodG in DNA that, on the grounds of precision and detection of dose response, cannot at present be recommended.  相似文献   

15.
A major DNA oxidation product, 2,2-diamino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone), can be generated either directly by oxidation of dG or as a secondary oxidation product with an intermediate of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). Site-specific mutagenesis studies indicate that oxazolone is a strongly mispairing lesion, inducing approximately 10-fold more mutations than 8-oxo-dG. While 8-oxo-dG undergoes facile further oxidation, oxazolone appears to be a stable final product of guanine oxidation, and, if formed in vivo, can potentially serve as a biomarker of DNA damage induced by oxidative stress. In this study, capillary liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) methods were developed to enable quantitative analysis of both 8-oxo-dG and oxazolone in DNA from biological sources. Sensitive and specific detection of 8-oxo-dG and oxazolone in enzymatic DNA hydrolysates was achieved by isotope dilution with the corresponding 15N-labeled internal standards. Both nucleobase adducts were formed in a dose-dependent manner in calf thymus DNA subjected to photooxidation in the presence of riboflavin. While the amounts of oxazolone continued to increase with the duration of irradiation, those of 8-oxo-dG reached a maximum at 20 min, suggesting that 8-oxo-dG is converted to secondary oxidation products. Both lesions were found in rat liver DNA isolated under carefully monitored conditions to minimize artifactual oxidation. Liver DNA of diabetic and control rats maintained on a diet high in animal fat contained 2-6 molecules of oxazolone per 10(7) guanines, while 8-oxo-dG amounts in the same samples were between 3 and 8 adducts per 10(6) guanines. The formation of oxazolone lesions in rat liver DNA, their relative stability in the presence of oxidants and their potent mispairing characteristics suggest that oxazolone may play a role in oxidative stress-mediated mutagenesis.  相似文献   

16.
We are attempting to resolve some of the problems encountered in measuring 8-hydroxy-2′-deoxyguanosine (8-oxodG) in human cellular DNA as a marker of oxidative stress. Samples of authentic 8-oxodG were distributed, and participating laboratories undertook to analyse this material within a specified period. Most HPLC procedures gave values for 8-oxodG within ±40% of the target, as did two of four GC-MS procedures, and both LC-MS-MS methods. Calf thymus DNA samples containing increasing amounts of 8-oxodG were also distributed for analysis. Fewer than half the procedures tested were able to detect the dose response; those that were successful tended to be procedures with low coefficients of variation. For the analysis of 8-oxodG in human cells, where it is likely to be present at much lower concentrations than in the calf thymus DNA, it is crucial to reduce analytical variation to a minimum; a coefficient of variation of less than 10% should be the aim, to give reasonable precision. HPLC with amperometric electrochemical detection is not recommended, as it is less sensitive than coulometric detection. Immunological detection, 32P-postlabelling and LC-MS-MS are alternative approaches to measurement of 8-oxodG in DNA that, on the grounds of precision and detection of dose response, cannot at present be recommended.  相似文献   

17.
Modifications to the alkaline Comet assay by using lesion-specific endonucleases, such as formamidopyrimidine-DNA glycosylase (FPG) and endonuclease III (ENDOIII, also known as Nth), can detect DNA bases with oxidative damage. This modified assay can be used to assess the genotoxic/carcinogenic potential of environmental chemicals. The goal of this study was to validate the ability of this modified assay to detect oxidative stress-induced genotoxicity in Drosophila melanogaster (Oregon R(+)). In this study, we used three well known chemical oxidative stress inducers: hydrogen peroxide (H(2)O(2)), cadmium chloride (CdCl(2)) and copper sulfate (CuSO(4)). Third instar larvae of D. melanogaster were fed various concentrations of the test chemicals (50-200μM) mixed with a standard Drosophila food for 24h. Alkaline Comet assays with and without the FPG and ENDOIII enzymes were performed with midgut cells that were isolated from the control and treated larvae. Our results show a concentration-dependent increase (p<0.05-0.001) in the migration of DNA from the treated larvae. ENDOIII treatment detected more oxidative DNA damage (specifically pyrimidine damage) in the H(2)O(2) exposed larvae compared to FPG or no enzyme treatment (buffer only). In contrast, FPG treatment detected more oxidative DNA damage (specifically purine damage) in CuSO(4) exposed larvae compared to ENDOIII. Although previously reported to be a potent genotoxic agent, CdCl(2) did not induce more oxidative DNA damage than the other test chemicals. Our results show that the modified alkaline Comet assay can be used to detect oxidative stress-induced DNA damage in D. melanogaster and thus may be applicable for in vivo genotoxic assessments of environmental chemicals.  相似文献   

18.
DNA is vulnerable to the attack of certain oxygen radicals and one of the major DNA lesions formed is 7,8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic lesion that can mispair with adenine. The repair of 8-oxoG was studied by measuring the gene specific removal of 8-oxoG after treatment of Chinese hamster ovary (CHO) fibroblasts with the photosensitizer Ro19-8022. This compound introduces 8-oxoG lesions, which can then be detected with the Escherichia coli formamidopyrimidine DNA glycosylase (FPG). In this report we present gene specific repair analysis of endogenous genes situated in different important cellular regions and also the first analysis of strand specific DNA repair of 8-oxoG in an endogenous gene. We were not able to detect any preferential repair of transcribed genes compared to non-transcribed regions and we did not detect any strand-bias in the repair of the housekeeping gene, dihydrofolate reductase (DHFR). In vivo, mitochondrial DNA is highly exposed to reactive oxygen species (ROS), and we find that the repair of 8-oxoG is more efficient in the mitochondrial DNA than in the nuclear DNA.  相似文献   

19.
Emphasis is placed in the first part of this survey on mechanistic aspects of the formation of 8-oxo-7,8-dihydroguanine (8-oxoGua) as the result of exposure to z.rad;OH radical, one-electron oxidants and singlet oxygen (1O(2)) oxidation. It was found that 8-oxoGua, which is generated by either hydration of the guanine radical cation or .OH addition at C8 of the imidazole ring, is a preferential target for further reactions with 1O(2) and one-electron oxidants, including the highly oxidizing oxyl-type guanine radical. Interestingly, tandem base lesions that involve 8-oxoGua and a vicinal formylamine residue were found to be generated within DNA as the result of a single .OH radical hit. The likely mechanism of formation of the latter lesions involves the transient generation of 5-(6)-peroxy-6-(5)-hydroxy-5,6-dihydropyrimidyl radicals that may add to the C8 of a vicinal guanine base before undergoing rearrangement. Another major topic which is addressed deals with recent developments in the measurement of oxidative base damage to cellular DNA. This was mostly achieved using the accurate and highly specific HPLC method coupled with the tandem mass spectrometry detection technique. Interestingly, optimized conditions of DNA extraction and subsequent work-up allow the accurate measurement of 11 modified nucleosides and bases within cellular DNA upon exposure to oxidizing agents including UVA and ionizing radiations. Finally, recently available data on the substrate specificity of DNA repair enzymes belonging to the base excision and nucleotide excision pathways are briefly reviewed. For this purpose modified oligonucleotides in which cyclopurine, and cyclopyrimidine nucleosides were site-specifically inserted were synthesized.  相似文献   

20.
Oxidative damage to guanine (8-oxoGua) is one of the most abundant lesions induced by oxidative stress and documented mutagenic. 8-Oxoguanine DNA glycosylase 1 (OGG1) removes 8-oxoGua from DNA by excision. The urinary excretion of 8-oxoGua is a biomarker of exposure, reflecting the rate of damage in the steady state. The aim of this study was to investigate urinary 8-oxoGua as a risk factor for lung cancer. In a nested case-cohort design we examined associations between urinary excretion of 8-oxoGua and risk of lung cancer as well as potential interaction with the OGG1 Ser326Cys polymorphism in a population-based cohort of 25,717 men and 27,972 women aged 50-64 years with 3-7 years follow-up. We included 260 cases with lung cancer and a subcohort of 263 individuals matched on sex, age, and smoking duration for comparison. Urine collected at entry was analysed for 8-oxoGua by HPLC with electrochemical detection. There was no significant effect of smoking or OGG1 genotype on the excretion of 8-oxoGua. Overall the incidence rate ratio (IRR) (95% confidence interval) of lung cancer was 1.06 (0.97-1.15) per doubling of 8-oxoGua excretion. The association between lung cancer risk and 8-oxoGua excretion was significant among men [IRR: 1.17 (1.03-1.31)], never-smokers [IRR: 9.94 (1.04-94.7)], and former smokers [IRR: 1.19 (1.07-1.33)]. There was no significant interaction with the OGG1 genotype, although the IRR was 1.14 (0.98-1.34) among subjects homozygous for Cys326. The association between urinary 8-oxoGua excretion and lung cancer risk among former and never-smokers suggests that oxidative stress with damage to DNA is important in this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号