首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the catalytic site of Streptomyces chromofuscus phospholipase D (PLD), which lacks an HKD motif, we examined the effects of inhibitors on the hydrolytic activity of the PLD by comparing it with cabbage and Streptomyces PLDs, which have two HKD motifs. We showed that dichloro-(2,2′:6′,2"-terpyridine)-platinum (II) dihydrate, a His- and Cys-directed chemical modifier, had inhibitory effects on the activities of all types of PLD examined. On the other hand, N -ethylmaleimide, a thiol-directed modifier had no such effects on PLD activity. These results suggest that the His residue plays an important role in the activity of Streptomyces chromofuscus PLD.  相似文献   

2.
Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca(2+)-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromofuscus PLD. Based on attempts at sequence alignment with other known Ca(2+)-independent PLD enzymes from Streptomyces species, we mutated five histidine residues (His72, His171, His187, His200, His226) that could be part of variants of an HKD motif. Only H187A and H200A showed dramatically reduced activity. However, mutation of these histidine residues to alanine also significantly altered the secondary structure of PLD. Asparagine replacements at these positions yielded enzymes with structure and activity similar to the recombinant wild-type PLD. The extent of phosphatidic acid (PA) activation of PC hydrolysis by the recombinant PLD enzymes differed in magnitude from PLD purified from S. chromofuscus culture medium (a 2-fold activation rather than 4-5-fold). One of the His mutants, H226A, showed a 12-fold enhancement by PA, suggesting this residue is involved in the kinetic activation. Another notable difference of this bacterial PLD from others is that it has a single cysteine (Cys123); other Streptomyces Ca(2+)-independent PLDs have eight Cys involved in intramolecular disulfide bonds. Both C123A and C123S, with secondary structure and stability similar to recombinant wild-type PLD, exhibited specific activity reduced by 10(-5) and 10(-4). The Cys mutants still bound Ca(2+), so that it is likely that this residue is part of the active site of the Ca(2+)-dependent PLD. This would suggest that S. chromofuscus PLD is a member of a new class of PLD enzymes.  相似文献   

3.
O-(n-alkyl)-N-(N,N'-dimethylethyl)phosphoramidates (n=6, 8, and 10; CnPNC) were synthesized and characterized as inhibitors of phospholipase D (PLD) activity toward phosphatidylcholine presented as monomers, micelles, and bilayers. Detailed studies with recombinant Streptomyces chromofuscus PLD, a Ca(2+)-activated enzyme that does not show large changes in catalytic activity toward the same substrate as a monomer or micelle, showed that the longer the inhibitor chain length, the more potent CnPNC is as a competitive inhibitor toward all the substrates. However, the physical state of the inhibitor did affect the maximum inhibition attainable. For a fixed concentration of diC4PC (monomer substrate), CnPNC inhibition reached a maximum around the CMC of the inhibitor; the inhibition was reduced at higher inhibitor concentrations, in part caused by the lower solubility of the aggregated inhibitor. With diC4PC as the substrate and using concentrations of C10PNC that were below its CMC, the Ki for C10PNC was 0.030+/-0.003 mM, approximately 13-fold less than the Km for substrate. Aggregated substrates showed significant inhibition of PLD by CnPNC, although as the substrate chain length increased, inhibition by a given CnPNC was diminished. With POPC vesicles, the apparent Ki for C10PNC was 0.030 of the apparent Km. The availability of these inhibitors allowed us to show that PC analogues can bind to the active site of S. chromofuscus PLD in the absence of Ca2+. Once bound at the active site, the inhibitor does not significantly affect the divalent ion-dependent partitioning of the enzyme to PC surfaces. Of the two other PLD enzymes examined, cabbage PLD, but not Streptomyces sp. PMF, was able to catalyze the cleavage of the P-N bond. Differential susceptibility of PLDs to these phosphoramidates may eventually be useful in studying PLD isozymes in cells.  相似文献   

4.
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.  相似文献   

5.
The phospholipase D (PLD) from Streptomyces chromofuscus belongs to the superfamily of PLDs. All the enzymes included in this superfamily are able to catalyze both hydrolysis and transphosphatidylation activities. However, S. chromofuscus PLD is calcium dependent and is often described as an enzyme with weak transphosphatidylation activity. S. chromofuscus PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid. Previous studies have shown that phosphatidic acid-calcium complexes are activators for the hydrolysis activity of this bacterial PLD. In this work, we investigated the influence of diacylglycerols (naturally occurring alcohols) as candidates for the transphosphatidylation reaction. Our results indicate that the transphosphatidylation reaction may occur using diacylglycerols as a substrate and that the phosphatidylalcohol produced can be directly hydrolyzed by PLD. We also focused on the surface pressure dependency of PLD-catalyzed hydrolysis of phospholipids. These experiments provided new information about PLD activity at a water-lipid interface. Our findings showed that classical phospholipid hydrolysis is influenced by surface pressure. In contrast, phosphatidylalcohol hydrolysis was found to be independent of surface pressure. This latter result was thought to be related to headgroup hydrophobicity. This work also highlights the physiological significance of phosphatidylalcohol production for bacterial infection of eukaryotic cells.  相似文献   

6.
A kinetic comparison of the hydrolase and transferase activities of two bacterial phospholipase D (PLD) enzymes with little sequence homology provides insights into mechanistic differences and also the more general role of Ca(2+) in modulating PLD reactions. Although the two PLDs exhibit similar substrate specificity (phosphatidylcholine preferred), sensitivity to substrate aggregation or Ca(2+), and pH optima are quite distinct. Streptomyces sp. PMF PLD, a member of the PLD superfamily, generates both hydrolase and transferase products in parallel, consistent with a mechanism that proceeds through a covalent phosphatidylhistidyl intermediate where the rate-limiting step is formation of the covalent intermediate. For Streptomyces chromofuscus PLD, the two reactions exhibit different pH profiles, a result consistent with a mechanism likely to involve direct attack of water or an alcohol on the phosphorus. Ca(2+), not required for monomer or micelle hydrolysis, can activate both PLDs for hydrolysis of PC unilamellar vesicles. In the case of Streptomyces sp. PMF PLD, Ca(2+) relieves product inhibition by interactions with the phosphatidic acid (PA). A similar rate enhancement could occur with other HxKx(4)D-motif PLDs as well. For S. chromofuscus PLD, Ca(2+) is absolutely critical for binding of the enzyme to PC vesicles and for PA activation. That the Ca(2+)-PA activation involves a discreet site on the protein is suggested by the observation that the identity of the C-terminal residue in S. chromofuscus PLD can modulate the extent of product activation.  相似文献   

7.
Recent studies have suggested the importance of phosphatidylcholine (PC) metabolism in growth factor-stimulated cells. In these cells, PC is hydrolyzed not only by PC-specific phospholipase C but also by phospholipase D (PLD). In the present investigation, we show that the simple addition of PC-hydrolyzing PLD from Streptomyces chromofuscus to the culture medium of vascular smooth muscle cells elicits choline release into the medium accompanied by the formation of phosphatidic acid. In the presence of ethanol, this treatment elicits a formation of phosphatidylethanol (PEt) at the expense of phosphatidic acid. Furthermore, we show here that exogenous addition of S. chromofuscus PLD induces a marked DNA synthesis in quiescent vascular smooth muscle cells. This DNA synthesis induced by S. chromofuscus PLD is, like platelet-derived growth factor (PDGF)-elicited DNA synthesis, largely dependent on the presence of insulin. In addition, S. chromofuscus PLD-induced PEt formation and DNA synthesis were not affected by protein kinase C down-regulation, whereas PDGF-induced PEt formation and DNA synthesis were significantly inhibited. These observations strongly suggest that protein kinase-dependent activation of PLD is involved in mitogenic signal in PDGF-stimulated cells and that exogenously added PLD acts as a competence factor in the same way as PDGF.  相似文献   

8.
To determine phospholipase D (PLD) activity, an infrared spectroscopy assay was developed, based on the phosphate vibrational mode of phospholipids such as dimyristoylphophatidylcholine (DMPC), lysophosphatidylglycerol (lysoPG), dipalmitoylphosphatidylethanolamine (DPPE), and lysophosphatidylserine (lysoPS). The phosphate bands served to monitor the hydrolysis rates of phospholipids with PLD. The measurements could be performed within less than 20min with 10μl of buffer containing 2 to 40mM DMPC and 10 to 200ng of Streptomyces chromofuscus PLD (corresponding to 350-7000pmol of DMPC hydrolyzed per minute). The limit of sensitivity was approximately 10ng of PLD at 100mM Tris-HCl (pH 8.0) with 10mM Ca(2+) and 2.5mgml(-1) Triton X-100. Reproducible specific activity of PLD (35±5nmol of hydrolyzed DMPCmin(-1)μg(-1) PLD) measured by the infrared assay remained stable over 50 to 200ng of PLD and over 5 to 40mM DMPC. The feasibility of this assay to determine the hydrolysis rate of other phospholipids such as lysoPG, DPPE, and lysoPS was confirmed. The IC(50) of cobalt (800±200μM), a known S. chromofuscus PLD inhibitor, was measured by means of the infrared assay, demonstrating that this assay can be used to screen PLD activity and/or the specificity of its inhibitors.  相似文献   

9.
Two phospholipase D (PLD) enzymes with both hydrolase and transferase activities were isolated from Streptomyces chromofuscus. There were substantial differences in the kinetic properties of the two PLD enzymes towards monomeric, micellar, and vesicle substrates. The most striking difference was that the higher molecular weight enzyme (PLD57 approximately 57 kDa) could be activated allosterically with a low mole fraction of phosphatidic acid (PA) incorporated into a PC bilayer (Geng et al., J. Biol. Chem. 273 (1998) 12195-12202). PLD42/20, a tightly associated complex of two peptides, one of 42 kDa and the other 20 kDa, had a 4-6-fold higher Vmax toward PC substrates than PLD57 and was not activated by PA. N-Terminal sequencing of both enzymes indicated that both components of PLD42/20 were cleavage products of PLD57. The larger component included the N-terminal segment of PLD57 and contained the active site. The N-terminus of the smaller peptide corresponded to the C-terminal region of PLD57; this peptide had no PLD activity by itself. Increasing the pH of PLD42/20 to 8.9, followed by chromatography of PLD42/20 on a HiTrap Q column at pH 8.5 separated the 42- and 20-kDa proteins. The 42-kDa complex had about the same specific activity with or without the 20-kDa fragment. The lack of PA activation for the 42-kDa protein and for PLD42/20 indicates that an intact C-terminal region of PLD57 is necessary for activation by PA. Furthermore, the mechanism for transmission of the allosteric signal requires an intact PLD57.  相似文献   

10.
GM2 activator protein (GM2AP) is a specific protein cofactor that stimulates the enzymatic hydrolysis of the GalNAc from GM2, a sialic acid containing glycosphingolipid, both in vitro and in lysosomes. While phospholipids together with glycosphingolipids are important membrane constituents, little is known about the possible effect of GM2AP on the hydrolysis of phospholipids. Several recent reports suggest that GM2AP might have functions other than stimulating the conversion of GM2 into GM3 by beta-hexosaminidase A, such as inhibiting the activity of platelet activating factor and enhancing the degradation of phosphatidylcholine by phospholipase D (PLD). We therefore examined the effect of GM2AP on the in vitro hydrolyses of a number of phospholipids and sphingomyelin by microbial (Streptomyces chromofuscus) and plant (cabbage) PLD. GM2AP, at the concentration as low as 1.08 microM (1 microg/50 microl) was found to inhibit about 70% of the hydrolyses of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol by PLD, whereas the same concentration of GM2AP only inhibited about 20-25% of the hydrolysis of sphingomyelin by sphingomyelinase and had no effect on the hydrolysis of sphingosylphosphorylcholine by PLD. Thus, GM2AP exerts strong and broad inhibitory effects on the hydrolysis of phospholipids carried out by plant and microbial PLDs. High ammonium sulfate concentration (1.6 M or 21.1%) masks this inhibitory effect, possibly due to the alteration of the ionic property of GM2AP.  相似文献   

11.
The substrate specificity for phospholipase D from Streptomyces chromofuscus (PLD(Sc)) has been determined utilizing an assay based on the quantitation of inorganic phosphate. 1,2-Di-n-hexanoyl phosphatidylcholine (C6PC), phosphatidylethanolamine (C6PE), phosphatidylserine (C6PS), phosphatidylglycerol (C6PG), and an unnatural phospholipid bearing a neohexyl headgroup (C6PDB) were examined as substrates. The assay relies on the quenching of the PLD(Sc)-catalyzed hydrolysis of the phospholipid substrates with EDTA followed by the hydrolysis of the phosphatidic acid product with alkaline phosphatase. The inorganic phosphate thus released is quantitated through the formation of a complex with ammonium molybdate, which has an absorbance maximum at 700 nm. To minimize the time involved and the reagents consumed, the assay is conducted in 96-well plates. The results of this study indicate that the catalytic efficiency for PLD(Sc) on the substrates is C6PC > C6PS approximately C6PE > C6PG > C6PDB.  相似文献   

12.
The phospholipase D (PLD) from Streptomyces chromofuscus is a soluble enzyme known to be activated by the phosphatidic acid-calcium complexes. PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid (PA). Previous studies concluded on an allosteric activation of PLD by the PA-calcium complexes. In this work, the role of PA and calcium was investigated in terms of membrane structure and dynamics. The role of calcium in PLD partitioning between the soluble phase and the water-lipid interface was tested. The monomolecular film technique was used to measure both membrane dynamics and PLD activity. These experiments provided information on PLD activity at a water-lipid interface. Moreover, the ability of PA to enhance PLD activity toward phosphatidylcholine was correlated to the physical properties of PA itself, affecting the rheology of the membrane. The effect of calcium was investigated on PLD binding to lipids and on the catalytic process by competition experiments between a soluble and a vesicular substrate. These experiments confirmed the absolute PLD requirement for calcium and pointed out the importance of calcium for PLD catalytic process and for the enzyme location at the water-lipid interface.  相似文献   

13.
Phospholipase D (PLD) of Streptomyces antibioticus was labelled with fluorescent-labelled substrate, 1-hexanoyl-2-{6-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)-amino]hexanoyl}-sn-glycero-3-phosphocholine, when it was incubated with the substrate and the reaction followed by SDS/PAGE. Mutant enzymes lacking the catalytic activity were not labelled under the same conditions, indicating that labelling of the PLD occurred as the result of its catalytic action. This confirmed that the labelled protein was the phosphatidyl PLD intermediate. PLDs contain two copies of the highly conserved catalytic HxKxxxxD (HKD) motif. Therefore, two protein fragments were separately prepared with recombinant strains of Escherichia coli. One of the fragments was the N-terminal half of the intact PLD containing one HKD motif, and the other was the C-terminal half with the other motif. An active enzyme was reconstructed from these two fragments, and therefore designated fragmentary PLD (fPLD). When fPLD was subjected to the labelling experiment, only the C-terminal half was labelled. Therefore, it was concluded that the catalytic nucleophile that bound directly to the phosphatidyl group of the substrate was located on the C-terminal half of PLD, and that the N-terminal half did not contain such a nucleophile.  相似文献   

14.
N-Acylethanolamines (NAEs) are endogenous lipids in plants produced from the phospholipid precursor, N-acylphosphatidylethanolamine, by phospholipase D (PLD). Here, we show that seven types of plant NAEs differing in acyl chain length and degree of unsaturation were potent inhibitors of the well-characterized, plant-specific isoform of PLD-PLD alpha. It is notable that PLD alpha, unlike other PLD isoforms, has been shown not to catalyze the formation of NAEs from N-acylphosphatidylethanolamine. In general, inhibition of PLD alpha activity by NAEs increased with decreasing acyl chain length and decreasing degree of unsaturation, such that N-lauroylethanolamine and N-myristoylethanolamine were most potent with IC(50)s at submicromolar concentrations for the recombinant castor bean (Ricinus communis) PLD alpha expressed in Escherichia coli and for partially purified cabbage (Brassica oleracea) PLD alpha. NAEs did not inhibit PLD from Streptomyces chromofuscus, and exhibited only moderate, mixed effects for two other recombinant plant PLD isoforms. Consistent with the inhibitory biochemical effects on PLD alpha in vitro, N-lauroylethanolamine, but not lauric acid, selectively inhibited abscisic acid-induced closure of stomata in epidermal peels of tobacco (Nicotiana tabacum cv Xanthi) and Commelina communis at low micromolar concentrations. Together, these results provide a new class of biochemical inhibitors to assist in the evaluation of PLD alpha physiological function(s), and they suggest a novel, lipid mediator role for endogenously produced NAEs in plant cells.  相似文献   

15.
The hydrolysis of 1,2-dipalmitoylphosphatidylcholine (DPPC) catalyzed by Streptomyces chromofuscus phospholipase D (PLD) has been investigated using monolayer techniques and polarization-modulated infrared absorption reflection spectroscopy. The spectroscopic analysis of the phosphate groups provides a quantitative estimation of the hydrolysis yield. The hydrolysis kinetics was investigated in dependence on the phase state of the lipid monolayer. It was found that PLD exhibits maximum activity in the liquid-expanded phase, whereas PLA2 has its activity maximum in the two-phase region. A lag phase was observed in all experiments indicating that small amounts of the hydrolysis product 1,2-dipalmitoylphosphatidic acid (DPPA) are needed for initiating the fast hydrolysis reaction. Higher concentrations of DPPA inhibit the hydrolysis. The critical inhibition concentration of DPPA is a function of the monolayer pressure.  相似文献   

16.
Phospholipase D (PLD) hydrolyzes phosphatidylcholine into phosphatidic acid (PA), a lipidic mediator that may act directly on cellular proteins or may be metabolized into lysophosphatidic acid (LPA). We previously showed that PLD contributed to the mitogenic effect of endothelin-1 (ET-1) in a leiomyoma cell line (ELT3 cells). In this work, we tested the ability of exogenous PA and PLD from Streptomyces chromofuscus (scPLD) to reproduce the effect of endogenous PLD in ELT3 cells and the possibility that these agents acted through LPA formation. We found that PA, scPLD, and LPA stimulated thymidine incorporation. LPA and scPLD induced extracellular signal-regulated kinase (ERK(1/2)) mitogen-activated protein kinase activation. Using Ki16425, an LPA(1)/LPA(3) receptor antagonist and small interfering RNA targeting LPA(1) receptor, we demonstrated that scPLD acted through LPA production and LPA(1) receptor activation. We found that scPLD induced LPA production by hydrolyzing lysophosphatidylcholine through its lysophospholipase D (lysoPLD) activity. Autotaxin (ATX), a naturally occurring lysoPLD, reproduced the effects of scPLD. By contrast, endogenous PLD stimulated by ET-1 failed to produce LPA. These results demonstrate that scPLD stimulated ELT3 cell proliferation by an LPA-dependent mechanism, different from that triggered by endogenous PLD. These data suggest that in vivo, an extracellular lysoPLD such as ATX may participate in leiomyoma growth through local LPA formation.  相似文献   

17.
Ca(2+)-dependent phospholipase D is secreted from Streptomyces chromofuscus as an intact enzyme of 57 kDa (PLD(57)). Under certain growth conditions, PLD is proteolytically cleaved and activated to form PLD(42/20) (named for the apparent size of the peptides). The PLD(42) catalytic core and 20 kDa C-terminal domain remain tightly associated through noncovalent interactions. In the presence of Ba(2+) (to enhance protein binding to zwitterionic vesicles without hydrolysis of substrate), PLD(42/20), but not PLD(57), induces POPC vesicle leakiness as measured by entrapped CF leakage. PLD(42/20) also induces vesicle fusion (as measured by light scattering, fluorescence quenching, and cryo-TEM) under these conditions (1 mM POPC, 5 mM Ba(2+)); neither PLD(42) nor PLD(20) alone can act as a fusogen. For intact PLD(57) to cause CF leakiness, the soluble activator diC(4)PA must be present. However, even with diC(4)PA, PLD(57) does not induce significant vesicle fusion. In the absence of metal ions, all PLD forms bind to PC vesicles doped with 10 mol % PA. Again, only PLD(42/20) is fusogenic and causes aggregation and fusion on a rapid time scale. Taken together, these data suggest that activated PLD(42/20) inserts more readily into the lipid bilayer than other PLD forms and creates structures that allow bilayers to fuse. Cleavage of the PLD(57) by a secreted protease to generate PLD(42/20) occurs in the late stages of S. chromofuscus cell cultures. Production of this more active and fusogenic enzyme may play a role in nutrient scavenging in stationary phase cultures.  相似文献   

18.

Background

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)4-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.

Methodology/Principal Findings

PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity.

Conclusions/Significance

Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.  相似文献   

19.
The Streptomyces chromofuscus phospholipase D (PLD) cleavage of phosphatidylcholine in bilayers can be enhanced by the addition of the product phosphatidic acid (PA). Other anionic lipids such as phosphatidylinositol, oleic acid, or phosphatidylmethanol do not activate this PLD. This allosteric activation by PA could involve a conformational change in the enzyme that alters PLD binding to phospholipid surfaces. To test this, the binding of intact PLD and proteolytically cleaved isoforms to styrene divinylbenzene beads coated with a phospholipid monolayer and to unilamellar vesicles was examined. The results indicate that intact PLD has a very high affinity for PA bilayers at pH >/= 7 in the presence of EGTA that is weakened as Ca(2+) or Ba(2+) are added to the system. Proteolytically clipped PLD also binds tightly to PA in the absence of metal ions. However, the isolated catalytic fragment has a considerably weaker affinity for PA surfaces. In contrast to PA surfaces, all PLD forms exhibited very low affinity for PC interfaces with an increased binding when Ba(2+) was added. All PLD forms also bound tightly to other anionic phospholipid surfaces (e.g. phosphatidylserine, phosphatidylinositol, and phosphatidylmethanol). However, this binding was not modulated in the same way by divalent cations. Chemical cross-linking studies suggested that a major effect of PLD binding to PA.Ca(2+) surfaces is aggregation of the enzyme. These results indicate that PLD partitioning to phospholipid surfaces and kinetic activation are two separate events and suggest that the Ca(2+) modulation of PA.PLD binding involves protein aggregation that may be the critical interaction for activation.  相似文献   

20.
《The Journal of cell biology》1993,123(6):1789-1796
alpha-Thrombin induced a change in the cell morphology of IIC9 fibroblasts from a semiround to an elongated form, accompanied by an increase in stress fibers. Incubation of the cells with phospholipase D (PLD) from Streptomyces chromofuscus and exogenous phosphatidic acid (PA) caused similar morphological changes, whereas platelet-derived growth factor (PDGF) and phorbol 12-myristate 13-acetate (PMA) induced different changes, e.g., disruption of stress fibers and cell rounding. alpha-Thrombin, PDGF, and exogenous PLD increased PA by 20-40%, and PMA produced a smaller increase. alpha-Thrombin and exogenous PLD produced rapid increases in the amount of filamentous actin (F-actin) that were sustained for at least 60 min. However, PDGF produced a transient increase of F-actin at 1 min and PMA caused no significant change. Dioctanoylglycerol was ineffective except at 50 micrograms/ml. Phospholipase C from Bacillus cereus, which increased diacylglycerol (DAG) but not PA, did not change F-actin content. Down-regulation of protein kinase C (PKC) did not block actin polymerization induced by alpha-thrombin. H-7 was also ineffective. Exogenous PA activated actin polymerization with a significant effect at 0.01 microgram/ml and a maximal increase at 1 microgram/ml. No other phospholipids tested, including polyphosphoinositides, significantly activated actin polymerization. PDGF partially inhibited PA-induced actin polymerization after an initial increase at 1 min. PMA completely or largely blocked actin polymerization induced by PA or PLD. These results show that PC-derived PA, but not DAG or PKC, activates actin polymerization in IIC9 fibroblasts, and indicate that PDGF and PMA have inhibitory effects on PA-induced actin polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号