共查询到20条相似文献,搜索用时 0 毫秒
1.
Purified membrane vesicles were treated with various reagents specific for different amino acid side-chains. Titration of sulfhydryl groups with specific reagents shows that the sulfhydryl content of membrane vesicles as estimated directly is similar to that found by treating spheroplasts or cells and then isolating the membrane vesicles. The blocking of sulfhydryl groups specifically inhibits the α-methylglucoside transport system (phosphotransferase system), whereas the glycerophosphate acylation system is not affected. The kinetics of inhibition of the first system show that a high reactivity of the sulfhydryl groups is involved. Inhibition of the acyltransferase activity by sulfhydryl reagents occurs only on partial denaturation of the membranes induced by mild sonication, heat or toluene treatment. The Inhibition is at the level of the glycerol 3-phosphate:acyl thioester acyltransferase.The effects of sonication and/or sulfhydryl reagents were measured by sulfhydryl titration, by assays of NADH oxidase and d-lactate dehydrogenase activities, as well as by 1-anilino-8-naphthalene sulfonate binding. The results support the hypothesis that the acyltransferase system is embedded within the membrane and that the readily accessible permease system is closer to (or at) the surface of the membrane. 相似文献
2.
Reaction of isolated bovine rod outer segment membrane with radioactiveN-ethylmaleimide, both in the presence and absence of 1% dodecyl sulfate followed by dodecyl sulfate-polyacrylamide gel electrophoresis, shows that six sulfhydryl groups (96% of total sulfhydryl in this membrane) are located on the rhodopsin molecule.On the basis of their reactivity towardsp-chloromercuribenzoate andp-chloromercuribenzene sulfonate in suspensions of outer segment membranes, the sulfhydryl groups of rhodopsin can be divided into three pairs. One pair is rapidly modified, both in light and darkness. This modification does not impair the recombination capacity of opsin with 11-cis retinaldehyde under regeneration of rhodopsin. A second pair is modified upon prolonged interaction with thep-chloromercuriderivatives in darkness. Modification of this pair leaves the typical rhodopsin absorbance at 500 nm intact, but a proportional loss of recombination capacity does occur. The third pair is only modified after illumination and is probably located in the vicinity of the chromophoric center.The difference between these results and those obtained by modification with dithiobis-(2-nitrobenzoic acid) orN-ethylmaleimide in suspension, where even upon prolonged exposure to light as well as in darkness only two sulfhydryl groups of rhodopsin are modified, is explained by the detergent-like character of thep-chloromercuri-derivatives. 相似文献
3.
4.
1. The number of exposed sulfhydryl groups in cattle rod photoreceptor membranes has been determined in suspension and after solubilization in various detergents both before and after illumination.2. In suspensions, two sulfhydryl groups are modified per mole of rhodopsin, both by Ellman's reagent 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide, while no extra SH groups are uncovered upon illumination. Neither reagent affects the spectral integrity of rhodopsin at 500 nm and the recombination capacity is retained upon modification of both rhodopsin and opsin.3. However, in detergents (digitonin, Triton X-100 and cetyltrimethylammonium bromide (CTAB)) 2–3 additional sulfhydryl groups appear upon illumination, in agreement with earlier reports.4. A total number of six sulfhydryl groups and two disulfide bridges are found in rod photoreceptor membranes, expressed per mole of rhodopsin.5. DTNB reacts somewhat faster with membrane suspensions after than before illumination. The less reactive sulfhydryl modifying agents O-methylisourea and methyl-p-nitrobenzene sulfonate show a similar behavior.6. It is concluded that illumination of rhodopsin in vivo will not uncover additional SH groups, although the reactivity of one exposed SH group may increase somewhat. These findings also exclude a role of SH groups in the covalent binding of the chromophore. 相似文献
5.
Cadmium-113 nuclear magnetic resonance (113Cd nmr) was used to elucidate the structural properties of the cadmium binding sites in human liver metallothionein. The isotopically labeled 113Cd-metallothionein was prepared by the in vitro exchange of the native metals (greater than 94% zinc) for 113CdCl2 during isolation. The two isoproteins, MT-1 and MT-2, showed 113Cd nmr resonances in the chemical shift range 610–670 ppm. The multiplet structure of the resonances is due to two bond scalar interactions between adjacent 113Cd ions linked by cysteine thiolate ligands. Homonuclear 113Cd decoupling experiments allowed the determination of the metal cluster structure, which, similar to the rabbit liver metallothionein, consists of a four- and a three-metal cluster designated cluster A and cluster B, respectively. Chemical shift similarities in the 113Cd nmr spectra of the human, rabbit and calf liver MT-1 and MT-2 are observed, especially for cluster A. Small variations in chemical shifts are explained in terms of differences in the primary structure between the two human isoproteins. 相似文献
6.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot). 相似文献
7.
Salmonella typhimurium strains which are commonly used in the Ames test for screening potential carcinogens were examined for a number of drug-metabolizing systems. Neither cytochrome P-450 itself nor two activities catalyzed by the cytochrome P-450 system in mammalian cells, i.e., benzpyrene monooxygenase and ethoxycoumarin O-deethylation, could be detected. Nor do these bacterial strains demonstrate any ability to detoxify epoxides by hydrating them or to conjugate p-nitrophenol with glucuronic acid.On the other hand, S. typhimurium strains G46, TA1535, TA100, TA1538 and TA98 contain considerable amounts of acid-soluble thiols, approx. 5–10% of which is glutathione. These bacteria can also enzymatically conjugate glutathione with 1-chloro-2,4-dinitrobenzene (CDNB) and can reduce oxidized glutathione using NADPH as cofactor.Thus, enzymatic and non-enzymatic reaction of immediate carcinogens with thiol groups in S. typhimurium may have a significant effect on the outcome of the Ames test in certain cases. 相似文献
8.
J C Seidel 《Biochemical and biophysical research communications》1978,85(1):107-113
Arginine deiminase (EC 3.5.3.6) from is a dimeric enzyme. Velocity centrifugation in 6 M guanidine HCl and peptide mapping of the BrCN fragments suggest that the subunits are identical. The reaction of one out of four sulfhydryl groups with 0.3 mM 5,5′-dithiobis-(2-nitrobenzoic acid) has a half-life of about 30 min in 2 M guanidine HCl at 15°, pH 8. The enzyme is irreversibly inhibited by 1 mM formamidinium ion within 1 min. Inactivation by this affinity label is resolvable into two concurrent first-order reactions in the presence of guanidinium ion; the fraction of enzyme which reacts at the faster rate is about 50%. These results are interpreted as evidence for two catalytic subunits which differ in conformation. 相似文献
9.
R Morgenstern J W DePierre L Ernster 《Biochemical and biophysical research communications》1979,87(3):657-663
Rat liver microsomes exhibit glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene as the second substrate. This activity can be stimulated 8-fold by treatment of the microsomes with N-ethylmaleimide and 4-fold with iodoacetamide. The corresponding glutathione S-transferase activity of the supernatant fraction is not affected by such treatment. These findings suggest that rat liver microsomes contain glutathione S-transferase distinct from those found in the cytoplasmic and that the microsomal transferase can be activated by modification of microsomal sulfhydryl group(s). 相似文献
10.
In order to investigate the influence of membrane lipids on transport via the protein domain of the erythrocyte membrane, a number of facilitated diffusion processes was studied by tracer flux techniques in whole cells after cleavage of up to 65% of the phosphatidylcholine or the sphingomyelin by phospholipase A2 from Naja naja or bee venom, or by sphingomyelinase, respectively.The mediated fluxes of l-arabinose, which is transported by the glucose carrier, and of l-lactate, which uses a specific monocarboxylate carrier, were markedly inhibited by cleavage of either phosphatidylcholine or sphingomyelin. These phospholipid dependencies are in line with earlier data on cholesterol dependencies (Deuticke, B. (1977) Rev. Physiol. Biochem. Pharmacol. 78, 1–97). They can only in part be explained by changes of membrane fluidity. More specific interactions of the degradation products with the carrier proteins seem also to play a role.Sulfate and oxalate transfer, which proceed via the inorganic anion-exchange system, are essentially unaffected by cleavage of phosphatidylcholine and less sensitive to sphingomyelin cleavage than the two other processes. This also agrees with earlier data on cholesterol independency of sulfate transfer. The inorganic anion-exchange protein thus seems to be less dependent on the surrounding lipids in its conformation and its mode of action than the two other carriers. 相似文献
11.
It has previously been shown that mercurials acting from the cytoplasmic side or from within the hydrophobic part of the membrane inactivate the small intestinal Na+/d-glucose cotransporter by blocking essential SH-groups (Klip, A., Grinstein, S. and Semenza, G. (1979) Biochim. Biophys. Acta 558, 233–245). Another (set of) sulfhydryl(s) which are critical for phlorizin binding and sugar transport function and which may lie on the luminal side of the brush border membrane, can be blocked by DTNB and 4,4′-dithiopyridine but not by . In addition, modification of amino groups by fluorescamine, reductive methylation and (under certain conditions) DIDS also lead to inactivation of the carrier's binding and transport functions. No evidence was obtained that any of the above groups is directly involved in the binding of either Na+/d-glucose or phlorizin, since none of these compounds prevented inactivation of the cotransporter. 相似文献
12.
Calf thymocytes were isolated and incubated with concanavalin A. The effect of the mitogen on the enzyme activity of membrane-bound lysolecithin acyltransferase (acyl-CoA: , EC 2.3.1.23) was determined as also the binding of 125I-labelled concanavalin A to intact cells and isolated membranes.The lysolecithin acyltransferase was found to be activated three times in microsomal membranes. The activation occurred directly after binding of concanavalin A and was temperature independent, since similar activities were found in cells treated with concanavalin A at 0 and 37 °C.The acyltransferase activation using increasing concentrations of concanavalin A revealed a different behaviour, as compared to the binding of concanavalin A. While the binding of concanavalin A to intact cells expressed a normal hyperbolic saturation function the activation process of the acyltransferase described a sigmoidal relationship. Corespondingly, the interaction coefficients for both functions were different (Sips coefficient for binding = 1.0 and Hill coefficient of the enzyme activation = 1.8).These results indicate that the acyltransferase activation is due to a cooperative interaction between the ligand-receptor complex and the enzyme. 相似文献
13.
Modification of pyridine dinucleotide transhydrogenase with tetranitromethane resulted in inhibition of its activity. Development of a membrane potential in submitochondrial particles during the reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH decreased to nearly the same extent as the transhydrogenase rate on tetranitromethane treatment of the membrane. Kinetics of the inactivation of homogeneous transhydrogenase and the enzyme reconstituted into phosphatidylcholine liposomes indicate that a single essential residue was modified per active monomer. NADP+, NADPH and NADH gave substantial protection against tetranitromethane inactivation of both the nonenergy-linked and energy-linked transhydrogenase reactions of submitochondrial particles and the NADPH → AcPyAD+ reaction of reconstituted enzyme. NAD+ had no effect on inactivation. Tetranitromethane modification of reconstituted transhydrogenase resulted in a decrease in the rate of coupled H+ translocation that was comparable to the decrease in the rate of NADPH → AcPyAD+ transhydrogenation. It is concluded that tetranitromethane modification controls the H+ translocation process solely through its effect on catalytic activity, rather than through alteration of a separate H+-binding domain. Nitrotyrosine was not found in tetranitromethane-treated transhydrogenase. Both 5,5′-dithiobis(2-nitrobenzoate)-accessible and buried sulfhydryl groups were modified with tetranitromethane. NADH and NADPH prevented sulfhydryl reactivity toward tetranitromethane. These data indicate that the inhibition seen with tetranitromethane results from the modification of a cysteine residue. 相似文献
14.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth).Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO3? > Br? > Cl? > I? > acetate ≈ isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an ‘uncoupling’ of ATP hydrolysis from H+ accumulation.Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN? to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN? is a very 相似文献
15.
16.
Different cross-linkers (10 mM) of varying specificity and arm length were found to cross-link mitochondrial matrix proteins in situ in 2 min at pH 7.4. As seen by SDS-polyacrylamide electrophoresis, the disappearance of individual protein bands was accompanied by concomitant appearance of polymeric aggregates that failed to enter the 4% spacer gel. The disorganization of the mitochondrial matrix infrastructure either by swelling or sonication of the mitochondria resulted in a decrease in the rate of cross-linking. Leakage of citrate synthase, malate dehydrogenase and fumarase was found to be reduced when cross-linked mitochondria were made permeable with toluene. On lysing the cross-linked mitochondria, a major part of the matrix protein (75%) was found to sediment with the membrane fraction. The activities of citrate synthase, malate dehydrogenase and fumarase in rat liver mitochondria were also found to increase in the precipitates with a concomitant decrease in their activities in the soluble matrix fraction. These results indicate that the cross-linker enters the mitochondria and cross-links matrix proteins including Krebs cycle enzymes either to the mitochondrial membranes, or to themselves resulting in very large molecular weight complexes. These results are interpreted to mean that in liver mitochondria, the Krebs cycle enzymes are preferentially located near the membrane. 相似文献
17.
The surface potential of microsomes of horse bean roots was compared to the one of liposomes prepared from the whole phospholipid extracts. The surface potential was determined from the affinity of the membranes for the anilinonaphthalene sulphonate dye. The effect of pH was studied at two KCl concentrations. It appeared from this comparison that the surface charge density was nearly the same on both materials in the neutral pH range. The isoelectric point was pH 1.7 for the liposomes and pH 4.0 for the microsomes. The implication of these observations is that the surface charge density of microsomes is nearly the same above the lipid and protein components of the membrane. This hypothesis was checked by measuring the activity of a microsomal enzyme with an anionic substrate, while modifying the net surface charge of the membrane. The biological significance of the results is discussed. 相似文献
18.
The sulfhydryl groups of the thiol-dependent cytolytic toxin from Bacillus alvei evidence for one essential sulfhydryl group 总被引:4,自引:0,他引:4
C Geoffroy A M Gilles J E Alouf 《Biochemical and biophysical research communications》1981,99(3):781-788
Alveolysin, an extracellular protein toxin (Mr ? 63,000) excreted by Bacillus alvei and purified to homogeneity was shown to contain four cysteine residues. All thiol groups of the hemolytically active toxin preparation were free as found by direct titration by 5,5′-dithiobis (2-nitrobenzoic acid) and confirmed by the absence of disulfide bond. Toxin alkylation with tosyl lysine chloromethyl ketone resulted in the complete loss of hemolytic activity and the disappearance of only one thiol group with no modification of histidine residues. These results support the conclusion that one essential thiol group is implicated in the membrane-disrupting activity of alveolysin. 相似文献
19.
1. Rat liver mitochondrial D(-)-beta-hydroxybutyrate dehydrogenase (submitochondrial particles and partially purified preparation) is inhibited by some dicarboxylates, especially by malonate and succinate. The inhibition is reversible and competitive with beta-hydroxybutyrate while uncompetitive with acetoacetate, NAD and NADH: the inhibition is maximal at pH 6 and decrease with increasing pH. 2. Diethylpyrocarbonate (which reacts preferentially with histidyl residues at pH 6.6) inactivates the dehydrogenase at pH 6.1, beta-hydroxybutyrate protects against inactivation, this inactivation being almost completely released by hydroxylamine. The diethylpyrocarbonate-treated enzyme shows an absorbance increase at 242 nm which is characterisitic of reaction between diethylpyrocarbonate and histidyl residue. 3. The optimum pH of the enzyme for beta-hydroxybutyrate oxidation is around 8.2, while for acetoacetate reduction, the optimum pH is around 7. 4. All these results favour the existence of a histidyl residue in the catalytic center and taking into account previous results concerning the effect of thiol reagents on the same enzyme and especially, the protective effect of NAD+ and NADH against these reagents [11] we discuss the possible occurrence of, at least, one histidyl and one cysteyl residue on the catalytic center. 相似文献
20.
Galen D. Peiser 《Phytochemistry》1978,17(1):79-84
Chlorophyll was rapidly destroyed in the presence of bisulfite and linoleic acid hydroperoxide. Both bisulfite and linoleic acid hydroperoxide were required for chlorophyll destruction and both were consumed in the reaction; however, there was no oxygen requirement. Chlorophyll destruction occurred most readily in the slightly acidic pH region with little destruction occurring above pH 8. The free radical scavengers, hydroquinone and α-tocopherol, were very effective at inhibiting chlorophyll destruction, but the singlet oxygen quenchers, β-carotene, 2,5-dimethylfuran and 1,3-diphenylisobenzofuran, were only slightly effective. The addition of metal chelators indicated that metals were not participating in the reaction. The evidence indicates that chlorophyll was destroyed by a free radical mechanism. Based on the present results and that of others, it is suggested that chlorophyll was destroyed via oxidation by the alkoxy radical which was produced during the decomposition of linoleic acid hydroperoxide by bisulfite. 相似文献