首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disk membranes and plasma membrane vesicles were prepared from bovine retinal rod outer segments (ROS). The plasma membrane vesicles were labeled with the fluorescent probe octadecylrhodamine B chloride (R18) to a level at which the R18 fluorescence was self-quenched. At pH 7.4 and 37 degrees C and in the presence of micromolar calcium, an increase in R18 fluorescence with time was observed when R18-labeled plasma membrane vesicles were introduced to a suspension of disks. This result was interpreted as fusion between the disk membranes and the plasma membranes, the fluorescence dequenching resulting from dilution of the R18 into the unlabeled membranes as a result of lipid mixing during membrane fusion. While the disk membranes exposed exclusively their cytoplasmic surface, plasma membrane vesicles were found with both possible orientations. These vesicles were fractionated into subpopulations with homogeneous orientation. Plasma membrane vesicles that were oriented with the cytoplasmic surface exposed were able to fuse with the disk membranes in a Ca(2+)-dependent manner. Fusion was not detected between disk membranes and plasma membrane vesicles oriented such that the cytoplasmic surface was on the interior of the vesicles. ROS plasma membrane-disk membrane fusion was stimulated by calcium, inhibited by EGTA, and unaffected by magnesium. Rod photoreceptor cells of vertebrate retinas undergo diurnal shedding of disk membranes containing the photopigment rhodopsin. Membrane fusion is required for the shedding process.  相似文献   

2.
The fusion of Sendai virus at pH 4-7 with artificial lipid vesicles composed of phosphatidylserine or phosphatidylcholine was quantified by measuring fluorescence energy transfer from N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-phosphatidylethanolamine to N-(lissamine-rhodamine-B-sulfonyl)-phosphatidylethanolamine in the target membranes. About 60% of the phosphatidylserine vesicles and virus appeared to fuse at pH 4 and about 100% at pH 5. Fusion was much less under all other conditions. The apparent fusion at pH 4, however, was due to a decrease in absorption of the acceptor probe, instead of dilution of acceptor as a result of fusion of labeled vesicles with unlabeled virus. After correction for this fusion-independent effect of Sendai virus, the extent of fusion was only 4-20% at pH 4 but still 80-100% at pH 5. These findings paralleled the loss of hemagglutinating and hemolytic activities of the virus induced by incubation at pH 4 but not at pH 5. Vesicle-virus hybrids were observed with the electron microscope after incubation at pH 5 but not at pH 7. The assay of membrane fusion by fluorescence energy transfer can be misleading unless correction is made for changes in energy transfer due to fusion-independent effects.  相似文献   

3.
Phosphatidylinositol and phosphatidylcholine are transferred between bilayer membranes in the presence of a specific phosphatidylinositol transfer protein isolated from bovine brain. The effects of pH, ionic strength and lipid composition on the rate of transfer of these phospholipids between small unilamellar vesicles have been investigated. At low ionic strength, phosphatidylinositol transfer between vesicles prepared from phosphatidylcholine and 5 mol% phosphatidylinositol was maximal at about pH 5 and moderately dependent on hydrogen ion concentration in more alkaline regions. A similar dependence on pH was noted for phosphatidylcholine transfer between membranes containing phosphatidylcholine or mixtures of phosphatidylcholine and 5 mol% phosphatidylinositol, phosphatidic acid, phosphatidylglycerol, phosphatidylethanolamine or stearylamine. The rate of transfer between anionic vesicles was somewhat higher than that between neutral or cationic vesicles. At higher ionic strength the transfer reactions in neutral and alkaline regions were less sensitive to pH. Phospholipid transfers between vesicles containing 5 mol% of anionic lipid increased sharply as ionic strength decreased below 0.1. In contrast, phosphatidylcholine transfer between membranes which contained only zwitterionic phospholipids or 5 mol% stearylamine was unaffected by variations of ionic strength. Irrespective of the lipid composition of membranes, pH affected both the apparent Km and Vmax, while ionic strength generally affected the apparent Vmax. These results indicate a significant role of electrostatic interactions in the phospholipid transfer catalyzed by phosphatidylinositol transfer protein.  相似文献   

4.
A new pair of fluorescence-energy-transferring probes, dansylphosphatidylethanolamine and dioctadecylindocarbocyanine, were incorporated separately into phospholipid vesicles to monitor intervesicle lipid mixing under various conditions. The transfer efficiencies of mixtures of sonicated vesicles labeled with 2 wt% donor dansylphosphatidylethanolamine (DnsPE) or with 1 wt% acceptor dioctadecylindocarbocyanine (DiI-C18) were negligible, but increased to about 25% after the vesicles had been frozen in a solid CO2/ethanol bath, thawed and diluted. The freeze-thaw-induced mixing of lipids between vesicles, signified by energy transfer, was dependent on lipid concentration and was promoted by 0.5-1.5 M KCl, 0.5 M potassium trichloroacetate and 5 mM sodium acetate (pH 4) and inhibited by 0.5 M LiCl, 0.5 M glycerol, 0.5 M sucrose, 0.15 M KCl and 0.15-1.5 M NaCl. These results support and complement previously reported measurements of the trapped volumes, turbidities and population size distributions of similarly treated liposomes. Comparison of the responses of paucilamellar vesicles with those of multilamellar vesicles suggests that lipid mixing during freeze-thawing can occur either during interaction of the outermost bilayers of vesicles or during interaction of all bilayers, possibly as a result of breakdown and reformation of bilayer structure.  相似文献   

5.
Eicosapentaenoic acid (20:5n-3) is metabolized by cytochrome P-450w3 of monkey seminal vesicles to 17R(18S)epoxy-5,8,11,14-eicosatetraenoic acid (17R(18S)EpETE). PGH synthase is abundant in this tissue. Racemic 17(18)EpETE was therefore investigated as a substrate of PGH synthase. The main products were identified as two diastereoisomers of 17(18)epoxyprostaglandin E2, which were formed in a 4:5 ratio. The structures were confirmed by authentic material. The natural epoxide enantiomer can thus be metabolized to novel 17R(18S)epoxyprostaglandins.  相似文献   

6.
The interaction of the low molecular weight group of surfactant-associated proteins, SP 5-18, with the major phospholipids of pulmonary surfactant was studied by fluorescence measurements of liposomal permeability and fusion, morphological studies, and surface activity measurements. The ability of SP 5-18 to increase the permeability of large unilamellar lipid vesicles was enhanced by the presence of negatively charged phospholipid. The permeability of these vesicles increased as the protein concentration was raised and the pH was lowered. SP 5-18 also induced leakage from liposomes made both from a synthetic surfactant lipid mixture and from lipids separated from SP 5-18 during its purification from canine sources. When SP 5-18 was added to egg phosphatidylglycerol liposomes, the population of liposomes which became permeable leaked all encapsulated contents, while the remaining liposomes did not leak at all. The extent of leakage was higher in the presence of 3 mM calcium. SP 5-18 also induced lipid mixing between two populations of egg phosphatidylglycerol liposomes in the presence of 3 mM calcium, as monitored by resonance energy transfer between two different fluorescent lipid probes, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine. Negative-staining electron microscopy showed that the addition of SP 5-18 and 3 mM calcium produced vesicles twice the size of control egg phosphatidylglycerol liposomes. In addition, surface balance measurements revealed that the adsorption of liposomal lipids to an air/water interface was enhanced by the presence of SP 5-18, negatively charged phospholipids, and 3 mM calcium. These observations suggest a similar lipid dependence for the interactions observed in the fluorescence and adsorption experiments.  相似文献   

7.
Microsomal triglyceride transfer protein (MTP) activity is classically measured using radioactive lipids. We described a simple fluorescence assay to measure its triacylglycerol (TAG) transfer activity. Here, we describe fluorescence-based methods to measure the transfer of phospholipids (PLs) and cholesteryl esters (CEs) by MTP. Both transfer activities increased with time and MTP amounts and were inhibited to different extents by an MTP antagonist, BMS197636. We also describe a method to measure the net deposition of fluorescent lipids in acceptor vesicles. In this procedure, negatively charged donor vesicles are incubated with MTP and acceptor vesicles, and lipids transferred to acceptors are quantified after the removal of donor vesicles and MTP by the addition of DE52. Lipid deposition in acceptor vesicles was dependent on time and MTP. Using these methods, TAG transfer activity was the most robust activity present in purified MTP; CE and PL transfer activities were 60-71% and 5-13% of the TAG transfer activity, respectively. The method to determine lipid transfer is recommended for routine MTP activity measurements for its simplicity. These methods may help identify specific inhibitors for individual lipid transfer activities, in characterizing different domains involved in transfer, and in the isolation of mutants that bind but cannot transfer lipids.  相似文献   

8.
Cytochrome b5 induced flip-flop of phosphatidylethanolamine (PE) in sonicated vesicles prepared from a 9:1 mixture of phosphatidylcholine (PC) to phosphatidylethanolamine was determined as follows. First, vesicles having a nonequilibrium distribution of PE across the bilayer were prepared by amidinating the external amino groups with isethionyl acetimidate. Amidinated cytochrome b5 was then added, and after the protein was completely bound, the rate of appearance of fresh PE on the outer surface was determined by removing aliquots at timed intervals and titrating the external amino groups with trinitrobenzenesulfonic acid. The results show an initial rapid phase of flip-flop (especially in the presence of salt) followed by a very slow phase, at 25 degrees C. Similar results were obtained when cytochrome b5 was introduced into the amidinated vesicles by spontaneous transfer from PC donor vesicles. These results indicate that the accumulation of the transferable ("loose") form of cytochrome b5 on the outer surface of a vesicle causes a transient, global destabilization of the bilayer that is relieved by lipid flip-flop. We speculate that this mechanism may be a significant driving force for the transfer of amphipathic molecules across membranes.  相似文献   

9.
We have investigated the pH-dependent interaction between large unilamellar phospholipid vesicles (liposomes) and membrane vesicles derived from Bacillus subtilis, utilizing a fluorescent assay based on resonance energy transfer (RET) (Struck, D. K., Hoekstra, D., and Pagano, R. E. (1981) Biochemistry 20, 4093-4099). Efficient interaction occurs only with negatively charged liposomes, containing cardiolipin or phosphatidylserine, as revealed by the dilution of the RET probes from the liposomal bilayer into the bacterial membrane. The initial rate of fluorophore dilution increases steeply with decreasing pH. The interaction involves a process of membrane fusion, as indicated by the proportional transfer of cholesteryl-[1-14C]oleate, 14C-labeled egg PC, and the RET probes from the liposomes to the bacterial vesicles, the formation of interaction products with an intermediate buoyant density, and the appearance of colloidal gold, initially encapsulated in the liposomes, in the internal volume of fused structures as revealed by thin-section electron microscopy. Treatment of B. subtilis vesicles with trypsin strongly inhibits the fusion reaction, indicating the protein dependence of the process. Vesicles derived from Streptococcus cremoris or from the inner membrane of Escherichia coli also show low pH-dependent fusion with liposomes. The fusion process described in this paper may well be of considerable importance to studies on the mechanisms of membrane fusion and to studies on the structure and function of bacterial membranes. In addition, the fusion reaction could be utilized to deliver foreign substances into bacterial protoplasts.  相似文献   

10.
Purified G-protein from vesicular stomatitis virus was reconstituted into egg phosphatidylcholine vesicles by detergent dialysis of octyl glucoside. A homogeneous population of reconstituted vesicles could be obtained, provided the protein to lipid ratio was high (about 0.3 mol % protein) and the detergent removal was slow. The reconstituted vesicles were assayed for fusion activity using electron microscopy and fluorescence energy transfer. The fusion activity mediated by the viral envelope protein was dependent upon pH, temperature, and target membrane lipid composition. Incubation of reconstituted vesicles at low pH with small unilamellar vesicles containing negatively charged lipids resulted in the appearance of large cochleate structures, as shown by electron microscopy using negative stain. This process did not cause leakage of a vesicle-encapsulated aqueous marker. The rate of fusion was pH-dependent with a pK of about 4 and the apparent energy of activation for the fusion was 16 +/- 1 kcal/mol. G-protein-mediated fusion showed a large preference for target membranes which contain phosphatidylserine or phosphatidic acid. Inclusion of 36% cholesterol in any of the lipid compositions had no effect on the rate of fusion. These reconstituted vesicles provide a system to study the mechanism of pH-dependent fusion induced by a viral spike protein.  相似文献   

11.
Recent studies of Fe2+ uptake by mouse proximal intestine brush-border membrane vesicles revealed low-affinity, NaCl-sensitive and high-affinity, NaCl-insensitive, components of uptake (Simpson, R.J. and Peters, T.J. (1985) Biochim. Biophys. Acta 814, 381-388). In this study, the former component is demonstrated to show a strong pH dependence with an optimum of pH 6.8-6.9. Studies at pH 6.5, where the low affinity component is inhibited by more than 25-fold compared with pH 7.2, suggest that the pH-sensitive component represents transport across the brush-border membrane followed by intravesicular binding. Cholate extracts of brush-border membrane vesicles contain pH- and NaCl-sensitive Fe2+ binding moieties which may be involved in the transfer of Fe2+ across the intestinal brush-border membrane and subsequent binding inside the vesicles. Fe2+ uptake by brush-border membrane vesicles from the duodenum of hypoxic mice is higher than uptake by vesicles from control-fed animals, suggesting the existence of a regulable brush-border membrane Fe2+ carrier.  相似文献   

12.
Fusion characteristics of EDTA-treated Escherichia coli cells with small unilamellar vesicles were investigated, using a membrane fusion assay based on resonance energy transfer. Ca2+-EDTA treatments of Escherichia coli O111:B4 (wild type), E. coli C600 (rough), and E. coli D21f2 (deep rough) which permeabilize the outer membrane by inducing the release of lipopolysaccharide and outer membrane proteins resulted in fusion activity of the intact and viable bacteria with small unilamellar vesicles. No fusion activity was observed when the EDTA treatment was omitted. Fusion could be elicited at low pH and by a combination of a higher pH and Ca2+. The low-pH-induced fusion was composed of a fast and a slow reaction. The latter and the Ca2+-induced fusion could be completely inhibited by trypsin treatments of the EDTA-treated cells, which also resulted in the simultaneous disappearance of two outer membrane protein bands (50 and 58 kilodaltons) and the appearance of proteins banding at 22, 52, and 54 kilodaltons. The most efficient fusion was obtained with negatively charged liposomes composed of cardiolipin. In contrast to the Ca2+-induced fusion, fusion was observed at low pH with small unilamellar vesicles containing lipids with decreased negative charge (phosphatidylserine). Fluorescent and phase-contrast microscopy revealed that essentially all bacteria were engaged in fusion. We propose that a Ca2+-EDTA treatment of E. coli cells results in the appearance of phospholipids and the exposure of a protein(s) in the outer leaflet of the outer membrane, both of which could mediate fusion with liposomes.  相似文献   

13.
C Pryor  M Bridge  L M Loew 《Biochemistry》1985,24(9):2203-2209
A new fluorescent lipid analogue, bimanephosphatidylcholine, has been synthesized for use in lipid bilayers. This probe is well suited as an energy-transfer donor with N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine as the acceptor. Dimyristoylphosphatidylethanolamine vesicles are prepared by sonication at pH 9 and characterized by electron microscopy and other methods. Resonance energy transfer between separately labeled donor and acceptor vesicles is monitored during HCl-induced aggregation to determine the kinetics of lipid randomization. Light scattering is also monitored to measure the kinetics of aggregation. The light scattering shows a marked reversal with NaOH while the energy transfer does not, indicating lipid exchange during a reversibly aggregated state; the extent of energy transfer suggests that only lipids in the outer monolayers exchange. The gel to liquid-crystalline phase transition temperature in HCl-treated vesicles is found to be 47 degrees C with diphenylhexatriene. The initial sonicated dispersion does not show a sharp phase transition. In vesicles labeled with both donor and acceptor probes, a small, irreversible increase in energy transfer is obtained upon lowering and then restoring the pH. These results suggest a metastable phase in the sonicated vesicles containing a randomized distribution of lipid and probes within the bilayers; the thermodynamically favored phase, whose formation is triggered by the pH shock, contains domains within which the probe lipids are more highly concentrated.  相似文献   

14.
Vitamin A movement between rod outer segment (ROS) membranes, interphotoreceptor retinoid-binding protein (IRBP), and liposomes was examined by two different methods. Equilibrium exchange of all-trans-retinol was followed by assessing the transfer of [3H]retinol from liposomes to ROS membranes as compared to a nontransferable marker, [14C]triolein. In the absence of IRBP, a rapid, spontaneous transfer of [3H] retinol to the ROS membranes occurred. In the presence of 2 microM IRBP, retinol transfer decreased by approximately one-half, whereas a similar concentration of bovine serum albumin had no effect on this spontaneous transfer. Kinetics of retinol transfer between single unilamellar vesicles were determined by the method of fluorescence energy transfer. The first order rate constant for this transfer was 0.85 s-1 at 22 degrees C at either pH 7.4 or pH 2.8. This rate was not affected by varying the concentration of acceptor vesicles 50-fold or by varying their concentration 10-fold at a constant ratio of donor-to-acceptor vesicles. The presence of IRBP as an additional acceptor did not change the rate. The transfer was temperature-dependent with an activation energy of 7.8 kcal/mol. The transfer rate appeared to be an increasing exponential function of ionic strength since high concentrations of NaCl decreased the transfer rate significantly. The transfer rate of retinol from IRBP to single unilamellar vesicles also followed first order kinetics with a rate constant of 0.11 s-1 at 22 degrees C, which was approximately 8 times slower than that of transfer between vesicles. We conclude that the transfer of all-trans-retinol between liposomes and membranes can be accomplished rapidly via the aqueous phase, and that IRBP retards rather than facilitates this transfer process.  相似文献   

15.
Measurements were made of the difference in the electrochemical potential of protons (delta-mu H+) across the membrane of vesicles restituted from the ATPase complex (TF0.F1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential (delta psi) and pH difference across the membrane (delta pH), respectively. In the presence of Tris buffer the maximal delta psi ans no delta pH were produced, while in the presence of the permeant anion NO-3 the maximal delta pH and a low delta psi were produced by the addition of ATP. When thATP concentration was 0.24 mm, the delta psi was 140-150 mV (positive inside) in Tris buffer, and the delta pH was 2.9-3.5 units (acidic inside) in the presence of NO-3. Addition of a saturating amount of ATP produced somewhat larger delta psi and delta pH values, and the delta -muH+attained was about 310mV. By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4-5 during ATP hydrolysis. The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

16.
A liposomal membrane model system was developed to examine the mechanism of spontaneous and protein-mediated intermembrane cholesterol transfer. Rat liver sterol carrier protein 2 (SCP2) and fatty acid binding protein (FABP, also called sterol carrier protein) both bind sterol. However, only SCP2 mediates sterol transfer. The exchange of sterol between small unilamellar vesicles (SUV) containing 35 mol % sterol was monitored with a recently developed assay [Nemecz, G., Fontaine, R. N., & Schroeder, F. (1988) Biochim. Biophys. Acta 943, 511-541], modified to continuous polarization measurement and not requiring separation of donor and acceptor membrane vesicles. As compared to spontaneous sterol exchange, 1.5 microM rat liver SCP2 enhanced the initial rate of sterol exchange between neutral zwwitterionic phosphatidylcholine SUV 2.3-fold. More important, the presence of acidic phospholipids (2.5-30 mol %) stimulated the SCP2-mediated increase in sterol transfer approximately 35-42-fold. Thus, acidic phospholipids strikingly potentiate the effect of SCP2 by 15-18 times as compared to SUV without negatively charged lipids. Rat liver FABP (up to 60 microM) was without effect on sterol transfer in either neutral zwitterionic or anionic phospholipid containing SUV. The potentiation of SCP2 action by acidic phospholipids was suppressed by high ionic strength, neomycin, and low pH. The results suggest that electrostatic interaction between SCP2 and negatively charged membranes may play an important role in the mechanism whereby SCP2 enhances intermembrane cholesterol transfer.  相似文献   

17.
Self- or concentration quenching of octadecylrhodamine B (C18-Rh) fluorescence increases linearly in egg phosphatidylcholine (PC) vesicles but exponentially in vesicles composed of egg PC:cholesterol, 1:1, as the probe concentration is raised to 10 mol%. Cholesterol-dependent enhancement of self-quenching also occurs when N-(lissamine-rhodamine-B-sulfonyl)dioleoylphosphatidylethanolamine is substituted for C18-Rh and resembles that in dipalmitoylphosphatidylcholine vesicles below, as opposed to above, the phase transition. These effects are not due to changes in dimer:monomer absorbance. Stern-Volmer plots indicate a dependence of quenching on nonfluorescent dimers both in the presence and absence of cholesterol. Decreases in fluorescence lifetimes with increasing probe concentration parallel decreases in residual fluorescence of C18-Rh with increasing probe concentration in PC and PC + cholesterol membranes, respectively. Decreases in the steady-state polarization of C18-Rh fluorescence as its concentration is raised to 10 mol% indicate energy transfer with emission between probe molecules in PC and to a lesser extent in PC + cholesterol membranes. The calculated R0 for 50% efficiency of energy transfer from excited state probe to monomer was 55-58 A and to dimer was 27 A. Since lateral diffusion of C18-Rh is probably too slow to permit collisional quenching during the lifetime of the probe, even if C18-Rh were concentrated in a separate phase, C18-Rh self-quenching appears to be due mainly to energy transfer without emission to nonfluorescent dimers.  相似文献   

18.
N Oku  S Shibamoto  F Ito  H Gondo  M Nango 《Biochemistry》1987,26(25):8145-8150
For the purpose of cytoplasmic delivery of aqueous content in liposomes through endosomes, we synthesized a pH-sensitive polymer, cetylacetyl(imidazol-4-ylmethyl)polyethylenimine (CAIPEI), which generates polycations at acidic pH. CAIPEI in its aqueous phase caused aggregation of sonicated vesicles composed of phosphatidylserine (PS) and phosphatidylcholine (PC) (molar ratio 1:4) when the pH of the solution was lowered. The polymer also induced membrane intermixing as measured by resonance energy transfer between vesicles containing N-(7-nitro-2,1,3-benz[d]oxadiazol-4-yl)phosphatidylethanolamine and those containing N-Rhodamine phosphatidylethanolamine at pH 4-5, while the addition of CAIPEI caused neither aggregation of PC vesicles nor the intermixing of liposomal membranes between PC and PC/PS vesicles at any pH. The CAIPEI-induced membrane intermixing was dependent on the polymer/vesicle ratio rather than on the polymer concentration. Then the polymer was incorporated into the bilayers of PC vesicles. These CAIPEI vesicles also caused membrane intermixing with liposomes containing PS under acidic conditions. The reconstituted CAIPEI did not reduce the trapping efficiency of vesicles or increase their permeability to glucose even at low pH. The vesicles caused the low pH induced aggregation and membrane intermixing with other negatively charged liposomes containing phosphatidic acid or phosphatidylglycerol. These results suggest that the protonation of the polymer at acidic pH endows the CAIPEI vesicles with the activity to fuse with negatively charged liposomes.  相似文献   

19.
Cholesterol and free fatty acids in membranes modulate major biological processes, and their cellular metabolism and actions are often coordinately regulated. However, effects of free fatty acid on cholesterol-membrane interactions have proven difficult to monitor in real time in intact systems. We developed a novel (13)C NMR method to assess effects of free fatty acids on molecular interactions of cholesterol within--and transfer between--model membranes. An important advantage of this method is the ability to acquire kinetic data without separation of donor and acceptor membranes. Large unilamellar phospholipid vesicles (LUV) with phosphatidylcholine/cholesterol ratios of 4:1 served as cholesterol donors. Small unilamellar vesicles (SUV) made with phosphatidylcholine were acceptors. The (13)C(4)-cholesterol peak is narrow in SUV, but very broad in LUV, spectra; the increase in intensity of this peak over time monitored transfer. Oleic acid and other long chain free fatty acids [saturated (C12-18) and unsaturated (C18)] dose-dependently increased mobilities of lipids in LUV (phospholipid and cholesterol) and cholesterol transfer rates, whereas short (C8-10) and very long (C24) chain free fatty acids did not. Decreasing pH from 7.4 to 6.5 (+/-oleic acid) had no effect on cholesterol transfer, and 5 mol % fatty acyl-CoAs increased transfer rates, demonstrating greater importance of the fatty-acyl tail over the headgroup. In LUV containing sphingomyelin, transfer rates decreased, but the presence of oleic acid increased transfer 1.3-fold. These results demonstrate free fatty acid-facilitated cholesterol movement within and between membranes, which may contribute to their multiple biological effects.  相似文献   

20.
Small unilamellar vesicles (SUV) were prepared from the total lipid extract of Mycoplasma capricolum. The SUV were labeled with the fluorescent probe octadecylrhodamine B chloride (R18) to a level at which the R18 fluorescence was self-quenched. At pH 7.4 and 37 degrees C, and in the presence of 5% polyethylene glycol, an increase in the R18 fluorescence with time was observed when the R18-labeled SUV were introduced to a native M. capricolum cell suspension. The fluorescence dequenching resulting from dilution of the R18 into the unlabeled membranes of M. capricolum, was interpreted as a result of lipid mixing during fusion between the SUV and the mycoplasma cells. The presence of cholesterol in the SUV was found to be obligatory to allow SUV-mycoplasma fusion to occur. Adaptation of M. capricolum cells to grow in a medium containing low cholesterol concentration provided cells in which the unesterified cholesterol content was as low as 17 micrograms/mg cell protein. The fusion activity of the adapted cells was very low or nonexistent. Nonetheless, when an early exponential phase culture of the adapted cells was transferred to a cholesterol-rich medium, the cells accumulated cholesterol and regained their fusogenic activity. The cholesterol requirement for fusion in the target mycoplasma membrane was met by a variety of planar sterols having a free beta-hydroxyl group, but differing in the aliphatic side chain, e.g., beta-sitosterol or ergosterol, even though these sterols, having a bulky side chain, are preferentially localized in the outer leaflet of the lipid bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号