首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The receptor tyrosine kinase, c-kit, and its ligand, stem cell factor (SCF), function in a diverse range of biological functions. The role of c-kit in the maintenance and survival of hematopoietic stem cells and of mast cells is well recognized. c-kit also plays an important role in melanogenesis, erythropoiesis and spermatogenesis. Recent work from our laboratory highlights an important role of c-kit in the regulation of expression of two molecules in dendritic cells (DCs), interleukin-6 (IL-6) and Jagged-2 (a ligand of Notch), which are known to regulate T helper cell differentiation. Our study shows that induction of c-kit expression and its signaling in DCs promotes Th2 and Th17 responses but not Th1 response. c-kit inhibition by imatinib mesylate (Gleevec) in DCs was previously shown to promote natural killer cell activation which may be due to dampening of IL-6 production by the DCs. Since dysregulation of c-kit function has been associated with various disease states including cancer, in this perspective we have focused on known and novel functions of c-kit to include molecules such as IL-6 and Notch that were not previously recognized to be within the purview of c-kit biology. We have also reviewed the differential expression pattern of SCF and c-kit on various cell types and its avriation during development or pathology. The recognition of previously unappreciated roles for c-kit will provide better insights into its function within and beyond the immune system and pave the way for developing better therapeutic strategies.  相似文献   

2.
3.
In Drosophila, primordial germ cells (PGCs) are set aside from somatic cells and subsequently migrate through the embryo and associate with somatic gonadal cells to form the embryonic gonad. During larval stages, PGCs proliferate in the female gonad, and a subset of PGCs are selected at late larval stages to become germ line stem cells (GSCs), the source of continuous egg production throughout adulthood. However, the degree of similarity between PGCs and the self-renewing GSCs is unclear. Here we show that many of the genes that are required for GSC maintenance in adults are also required to prevent precocious differentiation of PGCs within the larval ovary. We show that following overexpression of the GSC-differentiation gene bag of marbles (bam), PGCs differentiate to form cysts without becoming GSCs. Furthermore, PGCs that are mutant for nanos (nos), pumilio (pum) or for signaling components of the decapentaplegic (dpp) pathway also differentiate. The similarity in the genes necessary for GSC maintenance and the repression of PGC differentiation suggest that PGCs and GSCs may be functionally equivalent and that the larval gonad functions as a "PGC niche".  相似文献   

4.
The stage-specific embryonic antigen 1 (SSEA-1) is a cell marker of primordial germ cells (PGCs). In the present study, it is shown that isolation and purification of PGCs from 8.5-11.5 days post coitum (dpc) embryos can be achieved by a immunomagnetic cell sorting method using SSEA-1 antibody-conjugated magnetic beads, and then the sorted PGCs can be used for long-term culture under strict culture conditions to derive embryonic germ (EG) cell lines. Five independent EG cell lines with male karyotypes have been established. They show both a strong alkaline phosphatase activity and expression of the SSEA-1 antigen, and are karyotypically stable with a modal number of chromosomes in more than 80% of the cells. One of the EG cell lines from 8.5-dpc embryos produced chimeras after injections of the cells into 8-cell host embryos. These procedures could provide a useful and simple method for isolation of undifferentiated cells from a heterogeneous cell population and for establishment of embryo-derived stem cell lines.  相似文献   

5.
In the present paper we investigated the effects of stem cell factor/mastocyte growth factor (SCF/MGF), leukemia inhibitory factor/differentiating inhibitory activity (LIF/DIA) (two growth factors known to affect primordial germ cell growth in vitro) and forskolin (FRSK) (an activator of adenylate cyclase in many cell types) alone or in combination on the survival and proliferation of primordial germ cells (PGCs) obtained from 8.5, 10.5, and 11.5 days post coitum (dpc) mouse embryos and cultured without pre-formed cell feeder layers. The results showed that both at 1 and 3 days of culture the addition of 100 ng/ml SCF, 20 μM FRSK, or in some instances 20 ng/ml LIF alone caused a significant increase of PGC number as compared with controls. The highest effects were obtained when SCF and/or LIF were used together with FRSK. Moreover, we found that FRSK elevated cAMP levels in purified 11.5 dpc PGCs and that this compound, but not SCF and LIF, stimulated PGC proliferation, as assessed by 5-bromo-2′-deoxyuridin (BrdU) incorporation. These results suggest a mechanism of combined action of cAMP with SCF and/or LIF in the control of proliferation of mouse PGCs in vitro. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
The maintenance of stem cells in defined locations is crucial for all multicellular organisms. Although intrinsic factors and signals for stem cell fate have been identified in several species, it has remained unclear how these connect to the ability to reenter the cell cycle that is one of the defining properties of stem cells. We show that local reduction of expression of the RETINOBLASTOMA-RELATED (RBR) gene in Arabidopsis roots increases the amount of stem cells without affecting cell cycle duration in mitotically active cells. Conversely, induced RBR overexpression dissipates stem cells prior to arresting other mitotic cells. Overexpression of D cyclins, KIP-related proteins, and E2F factors also affects root stem cell pool size, and genetic interactions suggest that these factors function in a canonical RBR pathway to regulate somatic stem cells. Expression analysis and genetic interactions position RBR-mediated regulation of the stem cell state downstream of the patterning gene SCARECROW.  相似文献   

8.
9.
In most animal phyla from insects to mammals, there is a clear division of somatic and germ line cells. This is however not the case in plants and some animal phyla including tunicates, flatworms and the basal phylum Cnidaria, where germ stem cells arise de novo from somatic cells. Piwi-like genes represent essential stem cell genes in diverse multicellular organisms. The cnidarian Piwihomolog Cniwiwas cloned from Podocoryne carnea, a hydrozoan with a full life cycle. CniwiRNA is present in all developmental stages with highest levels in the egg and the medusa. In the adult medusa, Cniwi expression is prominent in the gonads where it likely functions as a germ stem cell gene. The gene is also expressed, albeit at low levels, in differentiated somatic cells like the striated muscle of the medusa. Isolated striated muscle cells can be induced to transdifferentiate into smooth muscle cells which proliferate and differentiate into nerve cells. Cniwi expression is upregulated transiently after induction of transdifferentiation and again when the emerging smooth muscle cells proliferate and differentiate. The continuous low-level expression of an inducible stem cell gene in differentiated somatic cells may underlie the ability to form medusa buds from polyp cells and explain the extraordinary transdifferentation and regeneration potential of Podocoryne carnea.  相似文献   

10.
The proliferative capacity of mouse connective tissue-type mast cells (CTMC) was analyzed by using a newly discovered c-kit ligand, termed stem cell factor (SCF). More than 90% of CTMC in the peritoneal cavity responded to recombinant rat SCF (rrSCF) and were able to give rise to pure mast cell colonies in methylcellulose culture. Serial observation (mapping) of growth of individual CTMC in culture containing rrSCF confirmed their striking proliferative ability. No serum but accessory cells (non-CTMC cells) in the peritoneal population were required for the clonal growth of CTMC induced by rrSCF in our methylcellulose culture of whole peritoneal cells. The rrSCF-induced mast cell colony formation from peritoneal CTMC was completely inhibited by the addition of anti-c-kit antibody, which can block the binding of SCF to c-kit, to the culture. When IL-3 was combined with rrSCF, mast cell colonies dramatically increased in size. Mapping studies revealed that the combination of the two factors augmented the proliferative rate of CTMC. Approximately 60% of the constituent cells of the mast cell colonies which were formed from peritoneal CTMC in the culture containing rrSCF alone were stained with berberine sulfate, which is a characteristic of CTMC. However, most mast cells which were induced by rrSCF+IL-3 from peritoneal CTMC contained berberine(-)-safranin(-)-Alcian blue(+) granules. Although IL-4 exhibited little synergism with rrSCF in the induction of CTMC proliferation, the addition of IL-4 to the culture containing rrSCF+IL-3 resulted in an increase in mast cells which retained CTMC characteristics.  相似文献   

11.
In long-term marrow cultures haemopoiesis can be maintained in vitro for up to 6 months. Critical analysis of the cell populations produced has shown that the stem cells and their committed progeny have characteristics in common with the corresponding cell types in vivo. The maintenance of haemopoiesis in vitro is associated with the development of an appropriate inductive environment provided by bone marrow derived adherent cells. Analysis of the interactions between environmental and haemopoietic cells has been facilitated by the development of in vitro systems reproducing the naturally occurring genetic environmental defects and other systems where the development of a competent inductive environment shows a dependency upon corticosteroid hormones. Investigations have shown that stem cell proliferation may be controlled by production of opposing activities, one stimulatory for DNA synthesis, the other inhibitory. A model is proposed whereby modulation in the production of these factors is determined by the physical presence of stem cells in a proposed cellular milieu, within the adherent layer. The adherent layer, apart from acting at the level of stem cell proliferation, can also modify the response of differentiating cells (eg, GM-CFC) to exogenous stimulatory activities. Addition of GM-CSF or of CSF-antiserum has no effect on haemopoiesis in long-term cultures.  相似文献   

12.
The International Symposium entitled "Germ Cells, Epigenetics, Reprogramming, and Embryonic Stem Cells" was organized by Norio Nakatsuji (Kyoto University) and Hiromitsu Nakauchi (University of Tokyo) in Kyoto, Japan (November 15-18, 2005). The meeting provided an overview of this important research area and highlighted recent advances.  相似文献   

13.
14.
人胚胎干细胞向生殖细胞分化的研究进展   总被引:4,自引:0,他引:4  
小鼠胚胎干细胞体外已成功诱导分化为配子细胞,人胚胎干细胞理论上也具备分化为生殖细胞的潜能。本文从影响人胚胎干细胞体外向生殖系分化的基因调控和干细胞小生境(niche)方面进行综述,并指出胚胎干细胞在生殖医学及不孕治疗中的研究方向和应用前景。  相似文献   

15.
16.
Low levels of oxygen (O2) occur naturally in developing embryos. Cells respond to their hypoxic microenvironment by stimulating several hypoxia-inducible factors (and other molecules that mediate O2 homeostasis), which then coordinate the development of the blood, vasculature, placenta, nervous system and other organs. Furthermore, embryonic stem and progenitor cells frequently occupy hypoxic 'niches' and low O2 regulates their differentiation. Recent work has revealed an important link between factors that are involved in regulating stem and progenitor cell behaviour and hypoxia-inducible factors, which provides a molecular framework for the hypoxic control of differentiation and cell fate. These findings have important implications for the development of therapies for tissue regeneration and disease.  相似文献   

17.
The thymus constitutes the microenvironment for T lymphocyte differentiation and acquisition of self-tolerance. Aiming to specify the contributions of the two essential parts of the thymus, namely hemopoietic and epithelial, we have devised experimental models in birds and mice. Chimeric thymuses, xenogeneic in birds and allogeneic in mice, were constructed early in development. In both models we could demonstrate a critical role of the epithelial component of the thymic stroma in induction and maintenance of self-tolerance. These experiments showed that suppression mechanisms are also implicated in these events, strongly suggesting the existence of regulatory T cells in both models. Before these experiments the control of self-tolerance was usually attributed to suppressive cells. However, as the cell phenotypes were not identified, the role of these cells was disregarded. Numerous studies since our investigations argue in favour of regulatory mechanisms. The work we initiated several years ago represents a contribution to our understanding of the two linked and opposite aspects of immune-responded control, namely self-tolerance and autoimmunity.  相似文献   

18.
A. Weisman’s conception of the germ track is considered within a historical context and the fundamental distinctions in the methods of forming the germ track cells in animals and plants are underscored. In animals differentiation of germ track cells is realized once at the start of embryogenesis, whereas in higher plants this process is achieved repeatedly throughout the entire life of the plant. Fundamental differences in morpho-and embryogenesis in animals and plants as well as differences in the properties of somatic and germ cells provide plants with special paths of hereditary variability and evolution which are not present in animals.  相似文献   

19.
Apoptosis plays an important role in controlling germ cell numbers and restricting abnormal cell proliferation during spermatogenesis. The tumor suppressor protein, p53, is highly expressed in the testis, and is known to be involved in apoptosis, which suggests that it is one of the major causes of germ cell loss in the testis. Mice that are c-kit/SCF mutant (Sl/Sld) and cryptorchid show similar testicular phenotypes; they carry undifferentiated spermatogonia and Sertoli cells in their seminiferous tubules. To investigate the role of p53-dependent apoptosis in infertile testes, we transplanted p53-deficient spermatogonia that were labeled with enhanced green fluorescence protein into cryptorchid and Sl/Sld testes. In cryptorchid testes, transplanted p53-deficient spermatogonia differentiated into spermatocytes, but not into haploid spermatids. In contrast, no differentiated germ cells were observed in Sl/Sld mutant testes. These results indicate that the mechanism of germ cell loss in the c-kit/SCF mutant is not dependent on p53, whereas the apoptotic mechanism in the cryptorchid testis is quite different (i.e., although the early stage of differentiation of spermatogonia and the meiotic prophase is dependent on p53-mediated apoptosis, the later stage of spermatids is not).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号